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Abstract: We evaluated how differences between two empirical resistance models for the same
geographic area affected predictions of gene flow processes and genetic diversity for the Mexican
spotted owl (Strix occidentalis lucida). The two resistance models represented the landscape under low-
and high-fragmentation parameters. Under low fragmentation, the landscape had larger but highly
concentrated habitat patches, whereas under high fragmentation, the landscape had smaller habitat
patches that scattered across a broader area. Overall habitat amount differed little between resistance
models. We tested eight scenarios reflecting a factorial design of three factors: resistance model (low vs.
high fragmentation), isolation hypothesis (isolation-by-distance, IBD, vs. isolation-by-resistance, IBR),
and dispersal limit of species (200 km vs. 300 km). Higher dispersal limit generally had a positive
but small influence on genetic diversity. Genetic distance increased with both geographic distance
and landscape resistance, but landscape resistance displayed a stronger influence. Connectivity was
positively related to genetic diversity under IBR but was less important under IBD. Fragmentation had
a strong negative influence on the spatial patterns of genetic diversity and effective population size
(Ns). Despite habitats being more concentrated and less widely distributed, the low-fragmentation
landscape had greater genetic diversity than the high-fragmentation landscape, suggesting that highly
concentrated but larger habitat patches may provide a genetic refuge for the Mexican spotted owl.

Keywords: biodiversity; CDPOP; connectivity; endangered species; fragmentation; gene flow;
landscape genetics; multiscale; resistance; simulation

1. Introduction

Globally, human-induced environmental change degrades habitats and drives biodiversity
loss and species extinctions across nearly all taxonomic groups [1–3]. Threatened and endangered
species are particularly vulnerable to habitat loss and degradation. The 2015 International Union
for Conservation of Nature (IUCN) Red List identifies habitat loss and degradation as the main
threat to 85% of all 79,837 species being assessed [4]. Habitat loss and fragmentation increase spatial
isolation of populations, reduce population size, and disrupt dispersal behavior and population
connectivity [5,6], leading to potential reduction in gene flow and subsequent decline in genetic
diversity [7–9]. In this context, habitats that provide connectivity and linkages for dispersal and
gene flow have high conservation value, especially in fragmented landscapes. In response to growing
concerns about habitat loss and fragmentation, the identification and protection of wildlife corridors has
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become an important tool for conserving landscape connectivity and gene flow of rare species [10,11].
Meanwhile, distribution and genetic data on rare species are often sparse because of small population
size and low detection probability, and existing data are usually restricted to small or local regions.
As a result, identifying important areas for conserving connectivity and gene flow over large landscapes
for rare species can be challenging.

Landscape genetics is an emerging discipline that integrates landscape ecology and population
genetics to statistically analyze the relationship between population genetic structures and landscape
features [12,13]. The emergence of landscape genetics has given rise to new and promising analytical
methods to explicitly quantify the effects of landscape heterogeneity on spatial patterns of genetic
processes, such as gene flow, genetic drift, and adaptation [14–17]. One of these innovations is
the integration of connectivity modeling and individual-based population genetics simulation for
determining broad-scale genetic connectivity patterns [18,19]. Simulation studies provide a feasible
solution for evaluating spatial genetic structure and differentiation when empirical genetic data
for target species are scarce or unavailable (e.g., [20,21]). These methods have been increasingly
used to aid the identification and design of corridors that maintain and restore linkages between
habitat patches and facilitate biotic processes such as dispersal and gene flow across many taxa,
including mammals [22–24], fish [25], insects [26], and plants [18,27].

Isolation-by-distance (IBD) is a common null model in landscape genetics that addresses
whether genetic differentiation exists among populations as a function of geographic distances
alone. IBD, however, does not consider the effects of heterogeneity in landscape features.
One common approach that evaluates the effects of landscape heterogeneity on genetic connectivity is
isolation-by-resistance (IBR) modeling [28–30], which quantifies the extent to which landscape features
act as resistance to movement of genes.

Although IBR may complement IBD to provide a more complete depiction of relationships
between landscape features and spatial population processes, its predictions are sensitive to
the assumptions, methods, and data sources of landscape resistance models. Quite often,
multiple resistance models derived from different data sources and geographic areas are available for
the same species. These models often depict different spatial configurations of habitat extensiveness
and fragmentation, which strongly affect detectability of landscape genetics relationships [31].
The validity of these models within a different spatial or temporal space is unknown until
tested. Hence, it is important to consider different possibilities by comparing model predictions.
A meta-analysis that combines multiple resistance models can be useful for detecting the true effects of
landscape patterns, such as fragmentation, on genetic processes.

According to a recent review, birds are the most underrepresented taxa in the landscape
genetics literature, and most bird species in these studies have relatively low dispersal ability [32].
Interestingly, birds have traditionally benefited from taxonomic bias and have been overrepresented in
ecology and conservation research compared to other taxa [33–38]. Such contrasting taxonomical bias
in landscape genetics may be due to the presumed high vagility and low spatial genetic variability
of birds relative to other taxa [32], notwithstanding the fact that bird species, even those with long
dispersal distance, can exhibit spatial genetic variation [39–41]. There is a critical need for landscape
genetics studies on bird species to improve the understanding of potential drivers that shape their
spatial genetic structures.

In this study, we sought to understand how differences between landscape resistance models
might affect predictions of gene flow processes and genetic diversity for a rare bird species of high
conservation importance, the Mexican spotted owl (Strix occidentalis lucida). This owl is highly selective
for nesting habitats and the availability of those habitats appears to limit its distribution [42]. At the
same time, it inhabits landscapes in which the distribution of those nesting habitats is naturally
fragmented [42] and is capable of dispersing over long distances and through habitats that differ
greatly from nesting habitat [43–46]. Thus, despite the strong selection for particular types of nesting
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habitat, it may be less sensitive to habitat fragmentation than many other studied species. This owl
provides an interesting model species in this context.

To evaluate differences between landscape resistance models, we simulated the gene flow and
population dynamics of the Mexican spotted owl using two empirical landscape resistance models
applied to the same geographic area, resulting in different degrees of fragmentation as well as a null
model of IBD. The two resistance models were developed based on two habitat suitability models that
showed strong performance [47,48], representing two reasonable scenarios of how the Mexican spotted
owl perceived the landscape. We simulated individual-based breeding and dispersal movements
and analyzed a suite of genetic diversity metrics in conjunction with connectivity models developed
from previous works [47,48] to evaluate: (1) the effect of landscape connectivity and fragmentation
on spatial population patterns; (2) genetic divergence as a function of geographical and resistance
distance; (3) genetic diversity as a function of landscape connectivity; and (4) how genetic diversity
and divergence might differ between the two landscape resistance models examined.

2. Materials and Methods

2.1. Study Species

The Mexican spotted owl is one of three recognized spotted owl subspecies in North America.
It typically occurs in forested habitats with high canopy cover of mixed-conifer or pine-oak [49–53] but
also occurs in rocky canyonlands [54]. Nest and roost sites are mostly found in deep, narrow canyons
and on steep slopes [42,55,56]. These habitats are widespread but naturally fragmented throughout
the southwestern United States and Mexico, so populations of the Mexican spotted owl are patchily
distributed. The range of the Mexican spotted owl extends from Utah and Colorado through Arizona,
New Mexico, and western Texas to southern Mexico. The Mexican spotted owl has experienced
population decline [57,58] primarily due to habitat loss and fragmentation from logging [42].
Although the Mexican spotted owl is now protected by the Endangered Species Act as a Threatened
species [59], its recovery is shrouded by uncertainty due to emerging threats such as uncharacteristically
large and severe wildfires and climate change, which have progressively become more influential in the
southwestern United States and have the potential to cause large-extent habitat reduction [42,60,61].

2.2. Study Area

Our study area was identical to the study area of Wan et al. [48], covering an extensive area of
northern Arizona, USA (latitude 32.6–35.4◦ N, longitude 108.6–112.1◦ W; Figure 1). We selected this
study area for three reasons. First, it allowed us to use habitat suitability, resistance, and connectivity
models produced by Wan et al. [48] for conducting our simulations and statistical analyses.
Second, habitat amount and fragmentation varied spatially across this area, providing interesting
variation both within and between models. Third, this area included part of what is considered the
core range of the Mexican spotted owl [42], making the results of high conservation interest.
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Figure 1. Red box indicates the boundary of the study area. Spatial extent is identical to the study area
of Wan et al. [48] for direct comparative analyses. Orange polygons indicate the general range of the
Mexican spotted owl.

2.3. Resistance Models

To evaluate how differences in landscape resistance models might affect gene flow, we used
two resistance surfaces developed by Wan et al. [48] in our landscape genetics simulations. The two
resistance surfaces were derived from negative exponential transformation (e.g., [62]) of two strong
habitat suitability models (Area Under the Curve = 0.91 and 0.88, respectively) [48]. The underlying
habitat models were developed with the same multiscale optimization method [63] but were applied to
two independent owl datasets collected from within a portion of our study area [55] and approximately
400 km from our study area [56]. The habitat models contained many of the same variables that were
important to the Mexican spotted owl, which generally described topography or habitat composition,
but the relative importance of individual variables differed between the models, with topographic
variables dominating one model [55] and composition variables dominating the other [55,56].

The resistance surfaces had values between 1 and 10 at any given pixel (pixel size = 30 × 30 m),
representing the relative permeability of landscape features to species movement. A high resistance
value (near 10) indicated areas the species was unlikely to traverse, and a low resistance value (near
1) indicated areas the species was likely to traverse. Both models predicted fragmented areas of low
resistance that were patchily distributed across the study area, but areas of low resistance were more
aggregated as larger patches in the first model (hereafter low-fragmentation model), whereas the
second model had areas of low resistance that were more fragmented and scattered across linear canyon
terrain throughout the study area (hereafter high-fragmentation model). Thus, the two empirically
based habitat models produced resistance surfaces that differed in habitat configuration, providing two
plausible models describing current habitat connectivity in this area. These differences in connectivity
in turn may drive future differences in gene flow across the landscape.

2.4. Fragmentation Analysis

To characterize habitat fragmentation, we transformed the probability maps of habitat suitability
predicted by the two models into binary maps of habitat versus non-habitat using 0.2 as the cutoff
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point (i.e., suitability > 0.2 was classified as habitat and suitability < 0.2 was classified as non-habitat).
We chose a relatively low value as the cutoff point (i.e., 0.2) because the owl is a mobile species and
can disperse through most habitats. Then, we used FRAGSTATS [64] to calculate a suite of landscape
metrics, including percentage of landscape (PLAND), mean patch size (AREA_MN), number of patches
(NP), patch density (PD), largest patch index (LPI), and radius of gyration (GYRATE; a measurement
of correlation length or extensiveness of patches).

2.5. Landscape Genetics Simulation

We evaluated patterns of gene flow under two hypotheses:

1. Isolation-by-distance (IBD): This hypothesis serves as a null model and assumes that species
movement decisions are affected purely by geographic distance, and genetic exchange occurs
more frequently between proximate individuals than distant individuals.

2. Isolation-by-resistance (IBR): This hypothesis posits that species movement decisions and
resulting gene flow are influenced by landscape features and patterns associated with
resource selection.

For each hypothesis, we used the Cost Distance Populations (CDPOP) simulation model [65]
to simulate the processes of breeding and dispersal movement. CDPOP is a spatially explicit,
individual-based landscape genetics simulation tool that models population dynamics and genetic
exchange as functions of individual-based movement on a resistance surface. For IBD, the resistance
surface can be viewed as a uniform raster with a resistance value of 1. For IBR, resistance surfaces
described above were used. To represent potentially occupiable locations of individual owls, we used
the habitat suitability map developed by Wan et al. [48] as an input probability raster to randomly
generate 1000 spatially balanced nodes (i.e., higher-probability areas had more random nodes and
lower-probability areas had fewer nodes). Each node could have up to two individuals. We randomly
populated 800 nodes (i.e., 80% occupancy), each with 2 individuals, for a total of 1600 initial individuals
for the simulations.

In our simulations, we considered two upper dispersal limits—high dispersal ability (300 km)
and low dispersal ability (200 km). We selected these two dispersal limits because they were identical
to the dispersal limits in the connectivity models of Wan et al. [48], which enabled us to conduct
statistical comparison analyses. The two dispersal limits corresponded to 300,000 and 200,000 cost
units on a uniform landscape of a minimum resistance value of 1. Although spotted owls are capable of
long-distance dispersal (>400 km) [46,66], most disperse <50 km [44,67,68]. To emulate that, probability
of dispersal in the simulation used a negative exponential function of distance such that ~90% dispersal
movements were <50 km (Figure 2).

The model stipulated that individuals would only mate with the nearest neighbor to represent
monogamous territorial mating. Fecundity was parameterized to a mean of 3.8 offspring per pair per
generation with a Poisson distribution to approximate fecundity over ~5 successful breeding seasons
(~0.76 young per pair per year across multiple studies) [69–71]. A 50:50 sex ratio was used and there
was no difference between male and female dispersal movement. At the beginning of the simulation,
each individual was randomly assigned 30 genetic loci, with 10 alleles per locus.

We tested eight scenarios, reflecting a full factorial design of three factors: (1) resistance model
(i.e., the low-fragmentation model vs. the high-fragmentation model), (2) isolation hypotheses
(i.e., IBD vs. IBR), and (3) maximum dispersal ability (i.e., 200 km vs. 300 km). For each scenario,
we performed 100 Monte Carlo simulation runs. Each run simulated dispersal and breeding
movements of 100 discrete and nonoverlapping generations. We used nonoverlapping generations to
simplify and accelerate the genetic processes in the simulations, which allowed us to project forward
into the future with fewer iterations.
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Figure 2. Functions used to transform cost distance to dispersal probability for parameterizing
landscape genetics simulations. Black curve represents dispersal probability function of the
high-dispersal scenario (300 km). Red curve represents dispersal probability function of the
low-dispersal scenario (200 km).

2.6. Spatial Population Patterns

We tracked the number of extant individuals at each node at the 100th generation of each
simulation run and calculated the mean effective population size (Ns) at each node using R package
sGD [72,73]. We conducted moving window analyses with a neighborhood radius of 20 km to map the
spatial patterns of population density.

2.7. Genetic Diversity

To evaluate genetic diversity, at the end of each simulation run (i.e., the 100th generation),
we calculated standard indices including allelic richness (Ar), observed heterozygosity (Ho),
and expected heterozygosity (He) within each node using R package sGD [72,73]. Then, we calculated
the mean indices of all Monte Carlo runs at each node. We conducted moving window analyses with
a neighborhood radius of 20 km to create smoothed continuous surfaces of the indices across the study
area to map spatial patterns of genetic structures.

2.8. Resistance Cost Distance and Genetic Distance

To assess the effects of the two isolation hypotheses on genetic divergence, we calculated pairwise
resistance distance and genetic distance between each node. For IBR, resistance distance was quantified
with the least-cost path approach, indicating the lowest cumulative path resistance between nodes.
For IBD, resistance distance was the total resistance of the least-cost path on a resistance surface in
which all pixels were assigned a value of one. Resistance distance was calculated with the ecodist
package in R [74]. To measure genetic distance, we used the propShared function in adegenet package in
R [75] and calculated the proportion of shared alleles (Dps) for each pair of nodes. Note, genetic distance,
by definition, is a measure of the dissimilarity as a function of distance, whereas Dps is a measure of
similarity. Therefore, Dps and genetic distance are inversely related.

After obtaining the matrices of resistance distance and genetic distance, we conducted two
analyses. First, we calculated Mantel correlations [76] between matrices of genetic distance and
resistance distance using the ecodist package in R [74]. Second, we vectorized the matrices and then
fitted linear, logarithmic, and exponential regression models to identify the best fit for depicting genetic
distance as a function of resistance distance.
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2.9. Genetic Diversity and Landscape Connectivity Relationships

We evaluated whether relationships of landscape connectivity and genetic diversity differed
between the two resistance models by using the connectivity models of Wan et al. [48].
The connectivity models were developed with the cumulative resistant kernel approach [77] in
landscape connectivity simulation software UNICOR [78]. Wan et al. [48] applied resistance surfaces
from the low-fragmentation and high-fragmentation models to calculate the cumulative resistant
kernel density within a maximum dispersal distance of 200 and 300 km, respectively. The cumulative
resistant kernel density is equivalent to the spatial incidence function of the frequency of dispersing
individuals found in every cell in the landscape [79] and the value of the cumulative resistant kernel
surfaces indicates the expected density of dispersing individuals at any given pixel in our study
area [48]. At each node, we extracted the value of the cumulative resistant kernel surface from the
connectivity models of Wan et al. [48]. We again fitted linear, logarithmic, and exponential regression
models to identify the best fit that relates connectivity strength to the standard indices described above.

3. Results

3.1. Fragmentation Analysis

Amount of habitat did not differ greatly between our two landscapes, with habitat patches
comprising approximately 1.5%–2% of the entire landscape among the two fragmentation models
(Figure 3). The high-fragmentation model had a higher number and density of habitat patches than
the low-fragmentation model (Figure 3). Largest patch index of habitat patches for the low and the
high-fragmentation models were 0.56 (519 km2) and 0.08 (74 km2), respectively. Mean habitat patch
size was larger in the low-fragmentation model than in the high-fragmentation model (Figure 3).
Also, habitat patches in the low-fragmentation model were spatially more extensive, as indicated by
the higher mean radius of gyration (Figure 3).
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Figure 3. Habitat and non-habitat binary maps predicted by (a) low-fragmentation [55] and
(b) high-fragmentation models [56] using a 0.2 suitability threshold. FRAGSTATS metrics that
characterizes fragmentation of habitat and non-habitat patches of the two models are shown in bottom
table. PLAND: percentage of landscape, AREA_MN: mean patch size, NP: number of patches, PD:
patch density, LPI: largest patch index, and GYRATE: radius of gyration of patches.

3.2. Spatial Patterns of Effective Population Size and Genetic Diversity

Our simulations showed little difference in spatial genetic patterns between high-dispersal and
low-dispersal scenarios (Figures 4 and 5). The low-fragmentation model and the high-fragmentation
model produced different spatial patterns of Ns and genetic diversity across all indices. For the
low-fragmentation model, populations were concentrated as a single cluster in the southeastern parts
of the study area under both isolation hypotheses, with a narrow corridor of populations that extended
from this cluster to the northeastern parts of the study area (Figure 4). In the high-fragmentation
model under IBR, Ns was low because of sparse neighborhoods of occupied nodes, whereas under
IBD, areas with a moderate level of Ns (i.e., ~20) were patchily distributed throughout the southern
half of the study area (Figure 4). Thus, the spatial pattern of mean population size differed under each
of the two spatial models.
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Figure 5. Spatial patterns of allelic richness (Ar) in the low-fragmentation model (left two columns)
and the high-fragmentation model (right two columns). Top row: high-dispersal scenario (300 km).
Bottom row: low-dispersal scenario (200 km).

For genetic diversity, under IBD with the low-fragmentation model, the spatial patterns of genetic
diversity were similar but with small clusters of islands that formed a stepping-stone-like corridor
connecting the southeast and northwest (Figure 5, Figures S1 and S2). In the low-fragmentation model
under IBR, areas with high genetic diversity were concentrated in the southeastern parts of the study
area, and small islands with moderate levels of Ar, Ho, and He were also observed in the northwest of
the study area (Figure 5, Figures S1 and S2). The high-fragmentation model predicted overall lower
genetic diversity than the low-fragmentation model (Figures 4 and 5). Under this model and IBD,
areas with moderate levels of Ho, He, and Ar were few and highly fragmented (Figure 5, Figures S1
and S2). Under IBD, across all genetic indices, areas with a moderate level of diversity were patchily
distributed throughout the northwest to southern half of the study area (Figure 5, Figures S1 and S2).
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3.3. Genetic Distance Increased with Resistance Distance

In both the Mantel test and regression analysis, the Dps was negatively related to resistance
distance (Table 1, Figure 6; complete results of regression analyses, including R2, p-value, and the
best form of regression (i.e., linear, logarithmic, and exponential), are provided in Tables S1–S5).
The strongest negative correlation with resistance distance was in the low-fragmentation model under
IBD (Table 1). Under IBR, correlations were significant but weaker. In the high-fragmentation model,
correlations between Dps and resistance distance in the high-dispersal scenario were moderately strong
under both IBD and IBR. In the low-dispersal scenario, the correlation was also moderately strong
under IBD but weak under IBR.

Table 1. Mantel tests relating the proportion of shared alleles (Dps) and resistance distance matrices in
the low-fragmentation model and the high-fragmentation model under high-dispersal (300 km) and
low-dispersal (200 km) scenarios. Significance of matrix correlations was tested by 1000 permutations.

Model Dispersal Isolation Mantel r p

Low fragmentation
High IBD −0.800 <0.001

IBR −0.569 <0.001

Low
IBD −0.830 <0.001
IBR −0.402 <0.001

High
fragmentation

High IBD −0.613 <0.001
IBR −0.648 <0.001

Low
IBD −0.646 <0.001
IBR −0.322 <0.001

Genes 2018, 9, x FOR PEER REVIEW  10 of 21 

 

In both the Mantel test and regression analysis, the Dps was negatively related to resistance 

distance (Table 1, Figure 6; complete results of regression analyses, including R2, p-value, and the best 

form of regression (i.e., linear, logarithmic, and exponential), are provided in Tables S1-S5). The 

strongest negative correlation with resistance distance was in the low-fragmentation model under 

IBD (Table 1). Under IBR, correlations were significant but weaker. In the high-fragmentation model, 

correlations between Dps and resistance distance in the high-dispersal scenario were moderately 

strong under both IBD and IBR. In the low-dispersal scenario, the correlation was also moderately 

strong under IBD but weak under IBR. 

Table 1. Mantel tests relating the proportion of shared alleles (Dps) and resistance distance matrices in 

the low-fragmentation model and the high-fragmentation model under high-dispersal (300 km) and 

low-dispersal (200 km) scenarios. Significance of matrix correlations was tested by 1000 permutations. 

Model Dispersal Isolation Mantel r p 

Low fragmentation 

High 
IBD −0.800 <0.001 

IBR −0.569 <0.001 

Low 
IBD −0.830 <0.001 

IBR −0.402 <0.001 

High fragmentation 

High 
IBD −0.613 <0.001 

IBR −0.648 <0.001 

Low 
IBD −0.646 <0.001 

IBR −0.322 <0.001 

 

Figure 6. Relationship between pairwise Dps and resistance distance in the low-fragmentation model 

(left two columns) and the high-fragmentation model (right two columns). Top row: high-dispersal 

scenario (300 km). Bottom row: low-dispersal scenario (200 km). Proportion of shared alleles (y-axis) is 

calculated with ecodist R package. Resistance distance (x-axis) is the least-cost path resistance between 

nodes. Gray markers represent each pairwise node distance. Adjusted R2 and p-value are shown. 

Exponential regression models had the best model fit (i.e., highest R2) for all IBD models, the 

linear model had the best fit for the low-fragmentation IBR models, and the logarithmic model had 

the best fit for the high-fragmentation IBR models (Table S1). Under all scenarios, Dps decreased with 

resistance distance (Figure 6). The low-fragmentation model under IBD showed the strongest 

relationship between Dps and resistance distance (Figure 6). Under IBR, the association ranged from 

moderate to weak. The high-fragmentation model showed a generally weaker relationship between Dps 

and resistance distance compared to the low-fragmentation model. Under IBD, there was a moderate 

relationship between Dps and resistance distance. Under IBR, it ranged from moderate to weak. 

Figure 6. Relationship between pairwise Dps and resistance distance in the low-fragmentation model
(left two columns) and the high-fragmentation model (right two columns). Top row: high-dispersal
scenario (300 km). Bottom row: low-dispersal scenario (200 km). Proportion of shared alleles (y-axis) is
calculated with ecodist R package. Resistance distance (x-axis) is the least-cost path resistance between
nodes. Gray markers represent each pairwise node distance. Adjusted R2 and p-value are shown.

Exponential regression models had the best model fit (i.e., highest R2) for all IBD models, the linear
model had the best fit for the low-fragmentation IBR models, and the logarithmic model had the best
fit for the high-fragmentation IBR models (Table S1). Under all scenarios, Dps decreased with resistance
distance (Figure 6). The low-fragmentation model under IBD showed the strongest relationship
between Dps and resistance distance (Figure 6). Under IBR, the association ranged from moderate
to weak. The high-fragmentation model showed a generally weaker relationship between Dps and
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resistance distance compared to the low-fragmentation model. Under IBD, there was a moderate
relationship between Dps and resistance distance. Under IBR, it ranged from moderate to weak.

3.4. Population Size and Landscape Connectivity Relationships

Ns increased with landscape connectivity in both the low-fragmentation model and the
high-fragmentation model and among all scenarios (Figure 7). Regression analyses showed that
linear models were best (i.e., highest R2) at describing relationships between population size and
landscape connectivity for most scenarios (Table S2). The logarithmic model was best at depicting
Ns in the high-fragmentation IBD models. The exponential model only had the highest R2 in the
low-fragmentation IBR model under the high-dispersal scenario. Under IBD, Ns showed a strong
positive relationship with landscape connectivity in the low-fragmentation model (Figures 7 and 8)
but a weaker positive relationship in the high-fragmentation model. Under IBR, Ns was strongly and
positively related to connectivity among all scenarios.
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Figure 7. Relationship between Ns and landscape connectivity in the low-fragmentation model (left two
columns) and the high-fragmentation model (right two columns). Top row: high-dispersal scenario
(300 km). Bottom row: low-dispersal scenario (200 km). Effective population size (y-axis) is calculated
with software sGD. Connectivity (x-axis) is quantified in terms of cumulative resistant kernel density,
representing the expected density of dispersing individuals. Gray markers represent the mean of
100 Monte Carlo simulation runs for each node. Adjusted R2 and p-values are shown.



Genes 2018, 9, 403 12 of 21

Genes 2018, 9, x FOR PEER REVIEW  11 of 21 

 

3.4. Population Size and Landscape Connectivity Relationships 

Ns increased with landscape connectivity in both the low-fragmentation model and the high-

fragmentation model and among all scenarios (Figure 7). Regression analyses showed that linear 

models were best (i.e., highest R2) at describing relationships between population size and landscape 

connectivity for most scenarios (Table S2). The logarithmic model was best at depicting Ns in the 

high-fragmentation IBD models. The exponential model only had the highest R2 in the low-

fragmentation IBR model under the high-dispersal scenario. Under IBD, Ns showed a strong positive 

relationship with landscape connectivity in the low-fragmentation model (Figures 7 and 8) but a 

weaker positive relationship in the high-fragmentation model. Under IBR, Ns was strongly and 

positively related to connectivity among all scenarios. 

 

Figure 7. Relationship between Ns and landscape connectivity in the low-fragmentation model (left 

two columns) and the high-fragmentation model (right two columns). Top row: high-dispersal 

scenario (300 km). Bottom row: low-dispersal scenario (200 km). Effective population size (y-axis) is 

calculated with software sGD. Connectivity (x-axis) is quantified in terms of cumulative resistant 

kernel density, representing the expected density of dispersing individuals. Gray markers represent 

the mean of 100 Monte Carlo simulation runs for each node. Adjusted R2 and p-values are shown. 

 

Figure 8. Relationship between Ar and landscape connectivity in the low-fragmentation model (left two
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3.5. Genetic Diversity and Landscape Connectivity Relationships

Under IBR, all genetic indices increased with connectivity under both fragmentation models
and among both high- and low-dispersal scenarios (Figure 8, Figures S3 and S4), but relationships
were weak under IBD. Linear models were best at describing relationships between genetic diversity
and connectivity among most scenarios except for the low-fragmentation IBR low-dispersal scenario
and the high-fragmentation IBR high-dispersal scenario, in which logarithmic models had better
model fit (Tables S3–S5). Under IBR, in the low-fragmentation model, Ar, Ho, and He exhibited strong
positive relationships with connectivity (Figure 8, Figures S3 and S4). In the high-fragmentation
model, the relationships were also strong under the high-dispersal scenario but weaker under the
low-dispersal scenario. Under IBD, Ar, Ho, and He were weakly related to landscape connectivity in
the low-fragmentation model (Figures 7 and 8) and the high-fragmentation model (Figure 8, Figures S3
and S4).

4. Discussion

We conducted the first landscape genetics study using individual-based simulations to model
broad-scale gene flow processes of the Mexican spotted owl in fragmented landscapes. Our results
suggested strong differences in future spatial genetic patterns between (1) models that contained
similar amounts of habitat but differed in degree of fragmentation of that habitat and (2) hypotheses
based on IBD versus IBR. In contrast, our simulations suggested fewer differences in spatial genetic
patterns in these landscapes between the two dispersal distances tested.

Our simulation results indicated that that both geographic distance and landscape resistance
increased genetic differentiation among individuals at the regional level (Figure 6, Table 1) but with
landscape resistance contributing to larger potential impacts on genetic divergence than did distance
alone (Figure 6, Table 1). For example, in the high-dispersal scenario of the low-fragmentation
model, average Dps decreased by ~4% between nodes with the greatest distance under IBD (Figure 6),
whereas average Dps decreased by ~20% between nodes with the greatest resistance distance under IBR.
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Also, the importance of geographic distance and landscape resistance varied by the dispersal ability of
the species and by the degree of fragmentation on the landscape. For example, geographic distance
played a bigger role in the differentiating genetic structures when the dispersal ability of the species
was low, especially under a less fragmented landscape (Figure 6). Conversely, landscape resistance
increased in importance when the dispersal ability of the species was high and on a highly fragmented
landscape (Figure 6).

4.1. Connectivity Facilitated Gene Flow

Our results suggested that having greater connectivity between habitat patches could help
maintain genetic diversity, although it appeared that the facilitative effect plateaus when connectivity
strength reaches a certain “threshold” (Figures 7 and 8). For example, in the low-fragmentation IBR
model, genetic diversity (i.e., Ho, He, and Ar) began to stabilize when connectivity strength (i.e., x-axes
in Figures 7 and 8) reached ~200. The stabilized diversity was similar to potential maximum diversity
(i.e., the simulated range of genetic diversity in the null IBD model; y-axes in Figure 8, Figures S3 and
S4). We observed a similar threshold effect at connectivity strength of ~50 in the high-fragmentation
IBR model. There also appeared to be greater variability when connectivity strength was low because
fragmentation limited gene flow and destabilized genetic structures. Cushman et al. conducted
a landscape genetics study on simulated landscapes of varying habitat configurations and found that
landscape genetic effects might not be detectable when habitats were highly connected because gene
flow was not limited by spatial patterns of landscape features [31]. Consistent with their findings,
this study shows that, even on landscapes from empirical models, landscape genetic effects are more
detectable when connectivity is low and less detectable when connectivity is high and reaches the
aforementioned threshold.

Also, the importance of geographic distance and landscape resistance varied by dispersal ability
of the species and by the degree of fragmentation on the landscape. For example, geographic
distance played a bigger role in the differentiating genetic structures when the dispersal ability
of the species was low, especially under a less fragmented landscape (Figure 6). Conversely, landscape
resistance increased in importance when the dispersal ability of the species was high and on a highly
fragmented landscape (Figure 6). We tested only two dispersal distances, and both allowed for
relatively long dispersal distances relative to most distances moved by spotted owls [44,68,80].
Thus, allowed movements may have been relatively liberal relative to the degree of connectivity
in our study landscapes, suggesting that we may have minimized our ability to detect spatial patterns
and threshold effects on our study landscapes. Arguing against this conclusion, however, note that
the negative exponential function used to model dispersal distance guaranteed that most dispersal
movements were short (Figure 2).

4.2. Linear, Logarithmic, and Exponential Relationships

Genetic distances often do not form clear linear relationships to landscape distances because of
confounding factors and landscape complexity [81,82]. Log-transformed data are sometimes used
to improve the linearity of landscape genetic relationships [81,83,84], although strong improvements
over untransformed data are not always observed [83,84]. In this study, we used linear, logarithmic,
and exponential regression models to account for potential nonlinear relationships. Most relationships
were best explained by linear models, but logarithmic and exponential models showed a better
fit to the data in some scenarios. In the cases where exponential models were superior to linear
models, the improvement was small, however (Table S1). Whereas, when the best fit was logarithmic,
the improvement was greater (Tables S1–S5). Ecologically, a logarithmic fit indicates that genetic
differentiations can occur quickly when populations are isolated. Conversely, an exponential fit
suggests that IBD effects become more detectable when a certain distance threshold has been breached.
Other forms of regression models (e.g., inverse regression, nonlinear regression, etc.) are available and
are worth further investigation in future studies.
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4.3. Aggregated and Concentrated vs. Fragmented and Widespread Landscapes

This study sheds light on an interesting question related to the classic SLOSS (single-large
or several-small) debate [85,86]: are population size and genetic diversity better preserved on
an aggregated but concentrated landscape or on a highly fragmented but widely distributed landscape?
Our results appear to support the former because habitat amount differed far less than habitat
configuration and dispersion between the low- and high-fragmentation models. For example,
many nodes were expected to have an effective population of >100 owls, with some reaching >300 owls,
in the low-fragmentation IBR models (Figure 7). In contrast, none of the nodes reached 100 owls in
the high-fragmentation IBR models. In addition, a comparison of genetic indices revealed that the
low-fragmentation model had overall greater genetic diversity than the high-fragmentation model.
For example, Ho and He reached >0.8 in the low fragmentation IBR models but only reached ~0.7 under
the best high-fragmentation IBR scenario (Figures S3 and S4). For a threatened species, a 10% decline in
heterozygosity might have a lasting negative impact. In the case of this study, fragmentation disrupts
population and genetic connectivity, and its negative effects on population size and genetic diversity
outweighed the benefits of having broadly distributed (but fragmented) core areas.

The isolation effect on genetic diversity has long been theorized [87] and empirically
demonstrated [88–90] but has recently been challenged by the habitat amount hypothesis [91].
This hypothesis posits that genetic structure is best predicted by habitat amount, and that habitat
configuration such as fragmentation, continuity, and isolation can be ignored. Empirical studies that
have examined the relative importance of habitat amount versus habitat configuration have yielded
contradictory results, often muddled by inconsistency of landscape and genetic metrics used in the
analyses [92]. Simulation studies on this topic have been rare and also yielded inconsistent results
(e.g., [93–95]). Our results based on empirical resistance models and simulated gene flow suggest that
the amount and continuity of habitat are both important for determining genetic diversity, but habitat
configuration seems to be more important than the amount because the latter did not vary much
overall between the two models. We see an opportunity for more empirical and simulation studies to
further understanding on this topic.

4.4. Comparison with Empirical Data on Genetic Structure

Few previous genetic studies have featured the Mexican spotted owl and none have explicitly
considered the context of landscape features [96–100]. These studies used empirical genetic data,
but because the Mexican spotted owl is a rare species, sample sizes in these studies were either
small or uneven by region. In the most extensive study in terms of sample size and spatial coverage,
Barrowclough et al. [100] concluded that most of the variability in genetic structure across the range
of the Mexican spotted owl occurred among distinct geographic regions, with much lower levels of
genetic variation observed among populations sampled within those regions. They concluded that gene
flow was substantial among populations within the relatively continuous habitat zone of the Mogollon
Rim (i.e., the northern portion of our study area). Outside of that region, however, genetic divergence
increased exponentially with geographic distance among fragmented populations on the scale of a few
hundreds of kilometers, implying reduced gene flow among those fragmented habitats.

Direct comparisons between our results and the empirical data in [100] are complicated by several
factors. First, our study area straddled the boundary between and included parts of two of their
regions (Upper Gila Mountains and Basin and Range West) which differed in apparent levels of gene
flow and genetic structure. Second, our results demonstrate predicted future patterns given current
landscape structure as a starting point, whereas results in Barrowclough et al. [100] were based on
samples collected in the 1980s and 1990s and reflected genetic processes occurring in past landscapes.
Third, sample sizes in [100] were relatively small and entirely lacking for most parts of our study area.

Despite these complicating factors, our results are at least partly consistent with empirical results.
For example, under the IBD hypothesis, the Mogollon Rim area (corresponding to the Upper Gila
Mountains Region in [100]) appears largely connected genetically, whereas the more highly fragmented
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area south of the Mogollon Rim (Basin and Range West region in Barrowclough et al. [100]) appears
far less connected in terms of spatial gene flow (Figures 4 and 5). Both results are largely consistent
with empirical results in Barrowclough et al. [100].

In contrast, results under the IBR hypothesis (Figures 4 and 5) generally show far less genetic
connectivity than indicated by empirical results [100] across our entire study area and for both levels
of fragmentation and levels of dispersal ability. There are several possible reasons for this apparent
discrepancy. First, it may indicate that IBD is a better predictor of landscape connectivity in the
Mexican spotted owl than IBR. That is, although this owl is highly selective for particular types of
habitat for nesting, it appears capable of dispersing long distances across landscapes where such
habitat is sparse or lacking to find suitable habitat patches. Alternatively, differences between our
results and empirical data could be due to differences between past landscapes and resulting genetic
processes and future processes given the current landscape. Finally, these differences may indicate
differences in sensitivity between genetic assays used here and the metrics of genetic structure used in
the previous empirical study, especially given their relatively low sample sizes and uneven spatial
sampling [100]. Finally, it is possible that the effects of landscape resistance are more apparent at larger
spatial scales than we examined and in more fragmented landscapes than our study area. At present,
we are unable to distinguish between these hypotheses, which are not mutually exclusive.

5. Conclusions

This simulation study of landscape genetics of the Mexican spotted owl provides an analytical
framework to identify relationships between landscape connectivity and genetic divergence and
develop a spatial model of gene flow. We also identified potential effects of fragmentation on genetic
processes by comparing two empirical resistance models. Our approach is replicable and can be used
to help understand landscape effects on gene flow and genetic diversity for other species. In addition,
this approach has relatively small data requirements, which makes it especially useful for analyzing
landscape genetics of rare species, such as the Mexican spotted owl in this study. The spatial model
may be valuable in designing conservation and management plans and in guiding monitoring efforts.
For example, our results suggest that habitat fragmentation/configuration may be as or more important
than habitat amount in promoting gene flow. The current Recovery Plan for the Mexican spotted owl
does not explicitly incorporate habitat configuration in management recommendations [42], but future
plans may benefit from explicitly incorporating spatial pattern, including provision of larger areas of
relatively high habitat concentration supporting multiple owl territories.

Our study approach can estimate variation in spatial patterns of genetic diversity and evaluate
the effects of landscape features based on simulated genetic data but does not provide inferences
regarding true genetic diversity and population structure. Rather, our results are useful for generating
hypotheses. Those hypotheses cannot be directly tested at this time due to the limited empirical genetic
data available and differences in time and spatial scales represented. Comparisons with the limited
empirical genetic data suggest areas of both agreement and disagreement between those data and
our results, however. Of particular importance, the empirical data suggests that, at the spatial scale
and level of connectivity present in our study landscape, IBD may better describe spatial pattern in
owl genetics than IBR. This is potentially an important finding with implications for understanding
how dispersing owls perceive the landscape, but the strength of that conclusion is limited by the small
samples and limited spatial coverage of existing genetic data for our study area. Comparisons with
empirical data could be strengthened by gathering a more current, extensive, and spatially balanced
sample of genetic material from owls within our study area. Better data on typical distances traveled
and habitats used by dispersing owls also would aid in refining landscape simulation models.

Because transforming habitat suitability into landscape resistance carries uncertainty for many
species [62,101], we also advocate for collection of more empirical genetic data to facilitate development
of resistance models based on actual genetic differentiation [28,102,103]. Such models should improve
our ability to simulate and understand genetic processes. We also recommend long-term monitoring
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and the collection of genetic data at the landscape level. Because of climate change and increasing
habitat fragmentation, genetic connectivity and population structures are not likely to remain stationary.
Data collected from these long-term monitoring efforts will provide important information for
understanding potential spatiotemporal changes of genetic patterns in this species of concern. Because
simulation studies do not replace but instead complement empirical studies, we encourage empirical
genetic studies for cross-validation of results from simulation studies. Finally, information from
this study should be interpreted cautiously and used as a general guide rather than for concise
management prescriptions.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4425/9/8/403/s1,
Figure S1: Spatial patterns of observed heterozygosity, Figure S2: Spatial patterns of expected heterozygosity,
Figure S3: Relationship between observed heterozygosity and landscape connectivity, Figure S4: Relationship
between expected heterozygosity and landscape connectivity, Table S1: Relationship between Dps and resistance
distance, Table S2: Relationship between effective population size (Ns) and connectivity, Table S3: Relationship
between allelic richness (Ar) and connectivity, Table S4: Relationship between observed heterozygosity (Ho) and
connectivity, Table S5: Relationship between expected heterozygosity (He) and connectivity.
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79. Kaszta, Ż.; Cushman, S.A.; Claudio, S.; Wolff, E.; Jorgelina, M. Where buffalo and cattle meet: Modelling
interspecific contact risk using cumulative resistant kernels. Ecography 2018, 41, 1–11. [CrossRef]

http://dx.doi.org/10.4996/fireecology.130318020
http://dx.doi.org/10.1002/jwmg.21423
http://dx.doi.org/10.1007/s10980-015-0194-4
http://dx.doi.org/10.1007/s10980-016-0388-4
http://www.umass.edu/landeco/research/fragstats/fragstats.html
http://dx.doi.org/10.1111/j.1755-0998.2009.02719.x
http://www.ncbi.nlm.nih.gov/pubmed/21565001
http://dx.doi.org/10.1111/j.1752-4571.2007.00002.x
http://www.ncbi.nlm.nih.gov/pubmed/25567499
http://dx.doi.org/10.1002/jwmg.642
http://dx.doi.org/10.1111/j.1755-0998.2011.03035.x
http://www.ncbi.nlm.nih.gov/pubmed/21679313
http://dx.doi.org/10.3389/fevo.2014.00062
http://dx.doi.org/10.18637/jss.v022.i07
http://dx.doi.org/10.1093/bioinformatics/btn129
http://www.ncbi.nlm.nih.gov/pubmed/18397895
http://www.ncbi.nlm.nih.gov/pubmed/6018555
http://dx.doi.org/10.1111/j.1523-1739.2007.00674.x
http://www.ncbi.nlm.nih.gov/pubmed/17531056
http://dx.doi.org/10.1111/j.1600-0587.2011.07149.x
http://dx.doi.org/10.1111/ecog.03039


Genes 2018, 9, 403 20 of 21

80. Hollenbeck, J.P.; Haig, S.M.; Forsman, E.D.; Wiens, J.D. Geographic variation in natal dispersal of Northern
Spotted Owls over 28 years. Condor 2018, 120, 530–542. [CrossRef]

81. Graves, T.A.; Beier, P.; Royle, J.A. Current approaches using genetic distances produce poor estimates of
landscape resistance to interindividual dispersal. Mol. Ecol. 2013, 22, 3888–3903. [CrossRef] [PubMed]

82. Shirk, A.J.; Landguth, E.L.; Cushman, S.A. A comparison of individual-based genetic distance metrics for
landscape genetics. Mol. Ecol. Resour. 2017, 17, 1308–1317. [CrossRef] [PubMed]

83. Ruiz-González, A.; Gurrutxaga, M.; Cushman, S.A.; Madeira, M.J.; Randi, E.; Gómez-Moliner, B.J. Landscape
genetics for the empirical assessment of resistance surfaces: The European pine marten (Martes martes) as
a target-species of a regional ecological network. PLoS ONE 2014, 9, e110552. [CrossRef] [PubMed]

84. Ruiz-Gonzalez, A.; Cushman, S.A.; Madeira, M.J.; Randi, E.; Gómez-Moliner, B.J. Isolation by distance,
resistance and/or clusters? Lessons learned from a forest-dwelling carnivore inhabiting a heterogeneous
landscape. Mol. Ecol. 2015, 24, 5110–5129. [CrossRef] [PubMed]

85. Diamond, J.M. The island dilemma: Lessons of modern biogeographic studies for the design of natural
reserves. Biol. Conserv. 1975, 7, 129–146. [CrossRef]

86. Simberloff, D.S.; Abele, L.G. Island biogeography theory and conservation practice. Science 1976, 191, 285–286.
[CrossRef] [PubMed]

87. Wright, S. Isolation by distance. Genetics 1943, 28, 114–138. [PubMed]
88. Trumbo, D.R.; Spear, S.F.; Baumsteiger, J.; Storfer, A. Rangewide landscape genetics of an endemic Pacific

northwestern salamander. Mol. Ecol. 2013, 22, 1250–1266. [CrossRef] [PubMed]
89. Rico, Y.; Holderegger, R.; Boehmer, H.J.; Wagner, H.H. Directed dispersal by rotational shepherding supports

landscape genetic connectivity in a calcareous grassland plant. Mol. Ecol. 2014, 23, 832–842. [CrossRef]
[PubMed]

90. Barr, K.R.; Kus, B.E.; Preston, K.L.; Howell, S.; Perkins, E.; Vandergast, A.G. Habitat fragmentation in
coastal southern California disrupts genetic connectivity in the cactus wren (Campylorhynchus brunneicapillus).
Mol. Ecol. 2015, 24, 2349–2363. [CrossRef] [PubMed]

91. Fahrig, L. Rethinking patch size and isolation effects: The habitat amount hypothesis. J. Biogeogr.
2013, 40, 1649–1663. [CrossRef]

92. DiLeo, M.F.; Wagner, H.H. A landscape ecologist’s agenda for landscape genetics. Curr. Landsc. Ecol. Rep.
2016, 1, 115–126. [CrossRef]

93. Bruggeman, D.J.; Wiegand, T.; Fernandez, N. The relative effects of habitat loss and fragmentation on
population genetic variation in the red-cockaded woodpecker (Picoides borealis). Mol. Ecol. 2010, 19, 3679–3691.
[CrossRef] [PubMed]

94. Cushman, S.A.; Shirk, A.J.; Landguth, E.L. Separating the effects of habitat area, fragmentation and matrix
resistance on genetic differentiation in complex landscapes. Landsc. Ecol. 2012, 27, 369–380. [CrossRef]

95. Jackson, N.D.; Fahrig, L. Habitat amount, not habitat configuration, best predicts population genetic structure
in fragmented landscapes. Landsc. Ecol. 2016, 31, 951–968. [CrossRef]

96. Barrowclough, G.F.; Gutiérrez, R.J. Genetic variation and differentiation in the spotted owl (Strix occidentalis).
Auk 1990, 107, 737–744. [CrossRef]

97. Barrowclough, G.F.; Groth, J.G. Demographic inferences from coalescent patterns: mtDNA sequences from
a population of Mexican spotted owls. In Proceedings of the 22nd International Ornithological Congress,
Durban, South Africa, 16–22 August 1998; Adams, N.J., Slotow, R.H., Eds.; BirdLife: Johannesburg, South
Africa, 1999; pp. 1914–1921.

98. Barrowclough, G.F.; Gutiérrez, R.J.; Groth, J.G. Phylogeography of spotted owl (Strix occidentalis) populations
based on mitochondrial DNA sequences: Gene flow, genetic structure, and a novel biogeographic pattern.
Evolution 1999, 53, 919–931. [CrossRef] [PubMed]

99. Haig, S.M.; Wagner, R.S.; Forsman, E.D.; Mullins, T.D. Geographic variation and genetic structure in spotted
owls. Conserv. Genet. 2001, 2, 25–40. [CrossRef]

100. Barrowclough, G.F.; Groth, J.G.; Mertz, L.A.; Gutiérrez, R.J. Genetic structure of Mexican spotted owl
(Strix occidentalis lucida) populations in a fragmented landscape. Auk 2006, 123, 1090–1102. [CrossRef]

101. Wasserman, T.N.; Cushman, S.A.; Schwartz, M.K.; Wallin, D.O. Spatial scaling and multi-model inference in
land scape genetics: Martes americana in northern Idaho. Landsc. Ecol. 2010, 25, 1601–1612. [CrossRef]

http://dx.doi.org/10.1650/CONDOR-17-164.1
http://dx.doi.org/10.1111/mec.12348
http://www.ncbi.nlm.nih.gov/pubmed/23786212
http://dx.doi.org/10.1111/1755-0998.12684
http://www.ncbi.nlm.nih.gov/pubmed/28449317
http://dx.doi.org/10.1371/journal.pone.0110552
http://www.ncbi.nlm.nih.gov/pubmed/25329047
http://dx.doi.org/10.1111/mec.13392
http://www.ncbi.nlm.nih.gov/pubmed/26394893
http://dx.doi.org/10.1016/0006-3207(75)90052-X
http://dx.doi.org/10.1126/science.191.4224.285
http://www.ncbi.nlm.nih.gov/pubmed/17832147
http://www.ncbi.nlm.nih.gov/pubmed/17247074
http://dx.doi.org/10.1111/mec.12168
http://www.ncbi.nlm.nih.gov/pubmed/23293948
http://dx.doi.org/10.1111/mec.12639
http://www.ncbi.nlm.nih.gov/pubmed/24451046
http://dx.doi.org/10.1111/mec.13176
http://www.ncbi.nlm.nih.gov/pubmed/25819510
http://dx.doi.org/10.1111/jbi.12130
http://dx.doi.org/10.1007/s40823-016-0013-x
http://dx.doi.org/10.1111/j.1365-294X.2010.04659.x
http://www.ncbi.nlm.nih.gov/pubmed/20618895
http://dx.doi.org/10.1007/s10980-011-9693-0
http://dx.doi.org/10.1007/s10980-015-0313-2
http://dx.doi.org/10.2307/4088004
http://dx.doi.org/10.1111/j.1558-5646.1999.tb05385.x
http://www.ncbi.nlm.nih.gov/pubmed/28565647
http://dx.doi.org/10.1023/A:1011561101460
http://dx.doi.org/10.1642/0004-8038(2006)123[1090:GSOMSO]2.0.CO;2
http://dx.doi.org/10.1007/s10980-010-9525-7


Genes 2018, 9, 403 21 of 21

102. Shirk, A.J.; Wallin, D.O.; Cushman, S.A.; Rice, C.G.; Warheit, K.I. Inferring landscape effects on gene flow:
A new model selection framework. Mol. Ecol. 2010, 19, 3603–3619. [CrossRef] [PubMed]

103. Vergara, M.; Cushman, S.A.; Ruiz–González, A. Ecological differences and limiting factors in different
regional contexts: Landscape genetics of the stone marten in the Iberian Peninsula. Landsc. Ecol.
2017, 32, 1269–1283. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1111/j.1365-294X.2010.04745.x
http://www.ncbi.nlm.nih.gov/pubmed/20723066
http://dx.doi.org/10.1007/s10980-017-0512-0
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Study Species 
	Study Area 
	Resistance Models 
	Fragmentation Analysis 
	Landscape Genetics Simulation 
	Spatial Population Patterns 
	Genetic Diversity 
	Resistance Cost Distance and Genetic Distance 
	Genetic Diversity and Landscape Connectivity Relationships 

	Results 
	Fragmentation Analysis 
	Spatial Patterns of Effective Population Size and Genetic Diversity 
	Genetic Distance Increased with Resistance Distance 
	Population Size and Landscape Connectivity Relationships 
	Genetic Diversity and Landscape Connectivity Relationships 

	Discussion 
	Connectivity Facilitated Gene Flow 
	Linear, Logarithmic, and Exponential Relationships 
	Aggregated and Concentrated vs. Fragmented and Widespread Landscapes 
	Comparison with Empirical Data on Genetic Structure 

	Conclusions 
	References

