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Abstract

Context Few habitat modeling studies consider

multiple spatial or temporal scales; less identify the

operative scale of an organism’s response to predictor

variables. Optimizing habitat suitability models yields

robust, reliable inferences about species-habitat rela-

tionships that can inform conservation efforts for

species, such as jaguars (Panthera onca) and pumas

(Puma concolor).

Objectives We provide one of the first examples of

evaluating temporal nonstationarity between seasons

while simultaneously evaluating the effects of spatial

and temporal scales on habitat selection. We sought

insight into the predictor variables and associated

scales determining seasonal distribution.

Methods We selected predictor variables known to

affect felid occurrence, then identified the optimal

scale for each variable. We calculated the focal mean

at spatial scales ranging from 500 m to 15,000 m. We

then developed habitat suitability models and evalu-

ated the effects of temporal scale on species co-

occurrence.

Results Patterns of jaguar and puma habitat selection

varied. For jaguars, primary forest and its resources at

fine scales were dominant predictors. For pumas,

primary forest, secondary forest, and agropecuary

lands at broad scales drove habitat selection. We

observed divergent seasonal habitat selection, partic-

ularly for jaguars. Models confirmed that these

sympatric predators might engage in spatial coordi-

nation to facilitate coexistence, as increased spatial

overlap at a given scale in each season was associated

with a diversification of landcover types.

Conclusions Our results highlight the importance of

considering spatial and temporal scales and temporal

nonstationarity in habitat modeling. We suggest

habitat modeling studies evaluate and optimize spatial

and temporal scale relationships.

Keywords Random forests � Multi-scale

optimization � Modeling � Habitat suitability � Species

distribution � Temporal nonstationarity � Machine

learning � Carnivore
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Introduction

Accurate descriptions of spatiotemporal patterns of

species-specific, optimal habitat, are fundamental to

forecasting the impacts of anthropogenic landscape

change on natural communities and ecosystems

(Pearson et al. 2004; Guisan et al. 2006). Currently,

the application of habitat suitability models (HSMs)

shows promise for understanding both the association

of the geographic location of a species with a set of

environmental variables (Guisan and Zimmermann

2000), and assessing the biogeographical relationships

between ecologically interacting species, such as

potential competitors (Acevedo et al. 2010; Espinosa

et al. 2018; Hearn et al. 2018).

Central to HSM is the effect of spatial scale, how

the scale of analysis affects the quantification of

species-habitat relationships (Wiens 1989; Levin

1992; Wheatley and Johnson 2009). Species-habitat

relationships are fundamentally scale-dependent and

inherently spatial processes (Thompson and McGari-

gal 2002; Wasserman et al. 2012; Mateo Sánchez et al.

2014; McGarigal et al. 2016). Each species will

experience its environment at a range of scales relative

to its life history traits and ecological requirements

(Johnson 1980; Wiens 1989). Since we often have no a

priori knowledge about the scales at which a species

responds to environmental heterogeneity, the charac-

teristic scale (or scales in the cases of multi-modal

scale relationships) of response must be identified

empirically (Jackson and Fahrig 2015; McGarigal

et al. 2016; Timm et al. 2016; Wan et al. 2017; Atzeni

et al. 2020). Describing how the contribution of each

environmental variable varies across scales produces

more accurate, organism-centered models that are

biologically more meaningful, and statistically, often

more powerful than a fixed scale framework (McGari-

gal et al. 2016; Atzeni et al. 2020).

Herein, we examine the role of environmental

interactions and anthropogenic pressures at multiple

scales in shaping the spatial distribution of two

sympatric, apex predators, the jaguar (Panthera onca),

and puma (Puma concolor), by conducting a scale-

optimized habitat selection analysis (sensu McGarigal

et al. 2016). Although each species’ geographic range

is relatively well known (e.g., Jȩdrzejewski et al.

2018), there are major knowledge gaps regarding the

contribution of environmental factors to range

configuration, occupied habitats, and fragmentation,

especially in tropical montane cloud forests.

To fill this gap, we used detection-nondetection

data from camera traps to develop seasonal maps of

habitat suitability in Panama. The models utilized

Random Forests (RF) (Breiman 2001), a machine-

learning algorithm based on an ensemble of predictor

variables. RF has frequently produced stronger pre-

dictive models compared to other methodologies (e.g.,

linear discriminant analysis, logistic regression) (Cut-

ler et al. 2007; Evans et al. 2011; Cushman and

Wasserman 2018).

In this study, our goals were (1) to determine the

spatial scale at which each variable most strongly

influenced jaguar and puma detection, (2) evaluate the

variability of prediction across seasons, (3) map and

assess patterns of suitable habitat for each species, and

(4) describe the differences in predicted habitat

suitability and overlap between species seasonally

and annually. We hypothesized that the habitat of

pumas is broader and more general, while the habitat

of jaguars is more specialized and restrictive, and

associated with extensive forest cover and proximity

to water. Also, we expected that correlations would be

higher between models for the same species than for

models between the species, and within species, we

expected correlations between annual-wet and annual-

dry to be higher than between wet-dry.

We aimed to understand the mechanisms behind

each felid species’ distribution in this region of Central

America. The modeling efforts carried out in this

study bolster our understanding of jaguar and puma

habitat selection in Panama and provide valuable

baseline predictions that drive future investigations to

evaluate the accuracy of our models. Collectively, the

models can be used to make informed land manage-

ment decisions to protect these species from habitat

deterioration. To our knowledge, this is the first HSM

study on jaguars and pumas in Central America to

adopt a multi-scale optimized approach.

Methods

Study area

The Republic of Panama (9� N, 80� W) spans about

75,717 km2 on an east–west axis, acting as a land bridge

between North and South America (Stehli and Webb
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1985; Woodburne et al. 2006; Weir et al. 2009) (Fig. 1).

The physiographic features that characterize the coun-

try include the Talamanca mountains, which abut the

Serrania de Tabasara to the west, and the Cordillera de

San Blas and Serrania del Darien mountains to the east

(Myers 1969). Panama’s elevation ranges from 0 to ca.

3475 m a.s.l. Mean annual temperatures range from

30 �C in the valleys to 20 �C in the mountains. The wet

season occurs from May to November and the dry

season from December to April. Annual rainfall

amounts range between 1700 mm and 4000 mm on

the Pacific and Atlantic coasts, respectively (Condit

et al. 2001; Ibáñez et al. 2002). Elevational differences

with associated temperature and precipitation patterns

Fig. 2 The sampled area indicating camera trap locations with jaguar (a) and puma (b) detection and nondetection within the three land

tenures of the Nargana Protected Wildlands, Chagres National Park, and Mamoni Valley
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produce distinct vegetative regimes that contribute to

the country’s rich biodiversity (Myers 1969). Humid

tropical and premontane forests dominate the lower

reaches of the mountains. Panama also boasts tropical

montane cloud forests, one of the world’s most

imperiled ecosystems (Aldrich et al. 1997).

Sampled area

The sampled area was selected for its ecological

significance and strategic location at the convergence

of three important protected areas in eastern Panama:

the Nargana Protected Wildlands, Chagres National

Park, and the Mamoni Valley. Together, the sampled

area comprised * 200 km2. Despite its limited size,

the sampled area is representative of the landscape and

resources used by jaguars and pumas in Panama

(Figs. 1, 2a, b).

The Nargana Protected Wildlands falls within the

semi-autonomous territory of the Indigenous Guna

Yala people. It includes the Caribbean side of the

Cordillera de San Blas, which has a very wet climate

owing to showers spawned by moisture-laden trade

winds. Most of the forest within this area is largely

undisturbed by human activities, but patches of fallow

(locally known as rastrojo) (pioneer forests 40–50 yrs.

old fallow) and secondary mature forest are apparent

(Fig. 2a, b).

Chagres National Park is part of the Panama Canal

Watershed (Condit et al. 2001), it borders the south-

western end of the Nargana Protected Wildlands.

Communities that live within the park rely on agricul-

ture and subsistence hunting for their livelihoods. Old-

growth forest dominates the upper ridges. Its topogra-

phy is rugged with permanent and intermittent streams,

steep rock walls along ridgelines, and ravines with

clear, fast-flowing, rocky streams (Fig. 2a, b).

The Mamoni Valley is located on the leeward side of

the Cordillera de San Blas facing the Pacific slope. With

most of the upper reaches still forested, the Mamoni

Valley acts as a buffer zone, protecting the eastern

border of Chagres National Park and the southwestern

border of the Nargana Protected Wildlands. The valley

includes 115 km2 of privately-owned and protected

lands. There are four villages within the valley with an

estimated population of 400 people whose economy is

largely agricultural, and ranching based. The land cover

is composed of a mixed matrix that includes secondary

forest, fallow (with various stages of maturity), tree

farms, pasture, and agropecuary practices (e.g., agri-

culture and livestock) (Fig. 2a, b).

Data collection

We obtained detection-nondetection data on jaguar

and puma habitat use from systematic camera trap

surveys in three contiguous areas under different

tenure regimes: (1) Nargana Protected Wildlands, (2)

Chagres National Park, and (3) the Mamoni Valley

(Fig. 2a, b). Camera trapping data were collected from

July 2016–September 2018. We established 48 camera

stations throughout the * 200 km2 sampled area.

Cameras were deployed year-round (through wet and

dry seasons), producing 16,583 trap nights. We

obtained a total of 153 detections of jaguars and 218

detections of pumas. A single jaguar or puma detection

was considered one photographic capture per hour.

Data analysis and predictor variables

We selected twenty-one predictor variables for mod-

eling the potential habitat of jaguars and pumas based

on their relevance to the species’ ecology (Table S1).

We used a 30 m resolution digital elevation model to

derive topographic covariates from Aster Global DEM

V002 (NASA). We applied the Gradient & Geomor-

phometry Metrix Toolbox (Evans et al. 2014) in

ArcGIS (ESRI, Redlands, CA) to calculate both the

topographical roughness and relative slope position.

We determined the landscape composition variables,

water body, and land use features by interpreting the

Cobertura Boscosa y Uso de Tierra 2012 land cover

map, the latest version provided by the Ministry of

Environment of Panama (MiAmbiente). We derived

the percent tree cover from the USGS Global Tree-

Canopy Cover Circa 2010, the most accurate data at

the spatial resolution and extent relevant to the study

area. These layers, despite being a few years apart

from our camera trap data, represent the best available

layers at the spatial grain and extent relevant to this

study. Also, no major disturbance had significantly

altered the sampled landscape between those years.

We obtained climate variables from Global Climate

Data—WorldClim.org (annual average past 30 years).

We resampled all landcover variables from a spatial

resolution of 5 m to 30 m with nearest neighbor

interpolation in the Resample tool in ArcGIS. To

resample the climate variables to a 30 m spatial
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resolution we used bilinear interpolation. Other vari-

ables were not resampled given their original form at

30 m. The spatial grain was held constant at 30 m in

the multi-scale analyses.

Habitat suitability modeling: random forests

RF is based on a classification and regression tree-

based bootstrap method that provides well-supported

predictions with large numbers of independent

variables and relatively small sample sizes (Breiman

2001; Cutler et al. 2007). This nonparametric

approach is suitable for modeling nonlinear data such

as environmental data and sparse data on occurrence,

particularly for rare, threatened, or endangered species

(Farrell et al. 2019). We used the ‘‘randomForest’’

package (Liaw and Wiener 2002) in R statistical

software.

Table 1 Optimal scales for

the most important

variables found in the

annual, wet season, and dry

season jaguar and puma

models

aModel accuracy indicated

by k, Cohen’s kappa, and

OOB error (refer to text for

definitions)
bVariable importance at

broad scales (over 7500 m)

Species Season Variable Optimal scale (m)

(model accuracy)a Name Code

Jaguar Annual Secondary forest Foremix 10,500b

(Panthera onca) (k,0.53; OOB, 0.22) Coniferous forest Forconi 14,000b

Human settlement People 4000

Aspect Aspect_cos 6000

Fallow Rastrojo 3500

Primary forest Mix_forest 10,500b

Wet Hydrologic feature Hydro 4500

(k,0.63; OOB, 0.18) Aspect Aspect_cos 3500

Slope Slope 3000

Fallow Rastrojo 1500

Elevation Dem 3500

Broadleaf forest Forlatif 11,000b

Coniferous forest Forconi 12,500b

Dry Fallow Rastrojo 3500

(k,0.40; OOB, 0.28) Secondary forest Foremix 10,500b

Elevation Dem 7000

Puma Annual Primary forest Mix_forest 500

(Puma concolor) (k,0.61; OOB, 0.11) Coniferous forest Forconi 13,500b

Elevation Dem 5500

Aspect Aspect_cos 11,000b

Hydrologic feature Hydro 500

Agropecuary Agropec 10,500b

Secondary forest Foremix 2000

Wet Primary forest Mix_forest 500

(k,0.39; OOB, 0.22) Agropecuary Agropec 14,000b

Elevation Dem 6000

Hydrologic feature Hydro 15,000b

Aspect Aspec_cos 11,000b

Coniferous forest Forconi 13,500b

Slope Slope 1500

Dry Primary forest Mix_forest 500

(k,0.56; OOB, 0.20) Aspect Aspect_cos 1000

Secondary forest Foremix 11,000b
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Scale optimization and variable selection

To identify the optimized scale for each predictor

variable that was most related to felid response, we

calculated the focal mean of each predictor variable

around each camera location across 30 spatial scales

(Wasserman et al. 2012), ranging from 500 m to

15,000 m radii at 500 m increments. For summarizing

our results, we categorized the 500 m–7500 m scales

as fine scale, and the 8000 m–15,000 m scales as broad

scale. We first utilized the Focal Statistic tool in

ArcGIS (ESRI, Redlands, CA) to conduct a moving

window analysis using a circular neighborhood and

the 30 spatial scales as search radii for each variable to

obtain an output raster. We then extracted the raster

values around each camera trap location for each scale

and each variable. The full set of candidate variables

was reduced from twenty-one to seventeen (Table 1;

Table S1).

Multi-scale optimized multivariate modeling

Following Cushman et al. (2017) and Cushman and

Wasserman (2018), we developed multi-scale opti-

mized models of jaguar and puma occurrence in three

stages. First, we conducted univariate scaling analyses

to identify the spatial scale at which each variable was

most strongly related to felid occurrence using the

total number of detections as the response variable.

Univariate scaling is a well-established method to

identify the characteristic scale (also known as scale of

effect, scale domain, optimal scale, etc.) in habitat

relationship modeling (Mateo-Sánchez et al. 2014;

Zeller et al. 2014; Jackson and Fahrig 2015; Laforge

et al. 2015; McGarigal et al. 2016; Vergara et al. 2016;

Wan et al. 2017). The RF classifier includes two

random processes that improve the predictive power

of the classification. When building each decision tree

in the forest (ensemble), at each tree branching node a

subset of potential predictor variables is randomly

selected on which the data is split (creating a child

node), thereby reducing the correlation between the

trees, resulting in a lower error rate (Horning 2010;

Smith 2010; Duro et al. 2012; Puissant et al. 2014;

Ashrafzadeh et al. 2020). In addition, the RF algorithm

randomly selects a bootstrap sample from a subset of

the total training data available to build each tree. A

third of this subset is left out-of-bag (OOB) and not

used to construct the tree. This OOB subset is then run

through a constructed tree to cross-validate the

classification, thereby deriving an unbiased estimate

of the test-set error (Breiman and Cutler 2003). We

selected the best-supported scale from each variable

based on the model with the lowest OOB error rate

(OOB; see Breiman 2001). Second, we applied the

multicollinear function in the rfUtilities R package

(Evans and Cushman 2009) to assess potential mul-

ticollinearity among all possible pairs of scale-opti-

mized variables identified in the univariate scaling

step, and removed variables that were significantly

correlated (p\ 0.05). Third, we ran RF with the

remaining variables (17) to model the probability of

jaguar and puma occurrence. We developed three final

RF models for each species: annual, wet season, and

dry season. Further, we acknowledge that the predic-

tions outside of the sampled area might not be as

accurate as within the sampled area (as described in

the limitation section).

Model validation

To assess the final models’ performance, we con-

ducted random permutations, cross-validation using a

resampling approach with the rf.crossValidation func-

tion in the rfUtilities package in R (Evans and Murphy

2018). We performed a total of 99 permutations. The

cross-validation produced a suite of performance

metrics including model error variance, Cohen’s

kappa statistics, and the cross-validated OOB error

rate. We calculated the mean square error

(‘‘%IncMSE’’) as a measure of variable importance.

The %IncMSE plot shows the mean increase of MSE

in nodes that use a predictor in the model when the

predictors’ values are randomly permuted. Addition-

ally, we produced partial dependency plots that

display how the RF model predictions are influenced

by each predictor when all other predictors in the

model are being controlled (Evans et al. 2011). They

graphically characterize the relationship between

variables and the predicted probabilities of felid

presence obtained by RF.

Correlation and average absolute difference

between models

We conducted pixel-pixel correlations of the predicted

probability between each pair of predicted maps (15

pairs of maps at 30 m pixel size). The correlations
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provide a value that ranges from 0 to 1, in which 1

indicates a stronger correlation between the two

predicted occurrence probability maps compared.

We hypothesized that (1) correlations would be higher

between models for the same species than for models

between the species, and (2) within species, we

expected correlations between annual-wet and

annual-dry to be higher than between wet-dry.

While the pixel-pixel correlation between maps

indicates the degree to which habitat suitability values

covary linearly between maps (measures how linearly

related suitability values are), the average absolute

difference measures the degree to which pixel-pixel

values differ quantitatively across pairs of maps (total

difference in predicted suitability across maps).

Together, they provide a full picture of the covariation

and total difference in predicted suitability (Hearn

et al. 2018). We hypothesized that (1) the average

absolute difference would be lowest for model pairs of

the same species, and (2) within species, we expected

the absolute average difference between wet-annual

and dry-annual to be lower than between wet-dry.

Results

The final optimized multi-scale seasonal models

indicated that jaguar and puma occurrence probabil-

ities differed in their respective relationships to the

spatial scale at which each predictor variable was

measured. The metrics related to jaguar and puma

habitat suitability were more influential at fine scales

(68.7% and 52.9%, respectively) than at broad scales

(31.2% and 47.0%, respectively) (Table 1), with

variables in the jaguar models concentrated at fine

scales and variables in the puma models relatively

evenly balanced between fine and broad scales.

Variable importance varied seasonally in the jaguar

models (Fig. 3a). In the annual model, the top

predictors were secondary and coniferous forests and

human settlement. Hydrologic and topographic fea-

tures were the most important determinants of jaguar

habitat selection during the wet season, whereas

fallow, secondary forest, and elevation were most

important in the dry season. The puma seasonal

models revealed similar influential predictor variables

throughout seasons, including primary and secondary

forests and agropecuary, followed by topographic

features (Fig. 3b).

For the jaguar models, the cross-validated OOB

error indicated relatively high predictive performance

for annual, wet, and dry seasons (0.22, 0.18, 0.28,

respectively), with the wet season model showing the

highest performance, followed by the annual and dry

season models. In contrast, for the puma models, the

cross-validated OOB error indicated the highest

predictive performance was the annual model (0.11),

followed by the dry (0.20) and wet (0.22) season

models (Table 1; Tables S2–S7).

Further, the Cohen’s kappa coefficient (Landis and

Koch 1977) for the jaguar models indicated reliable

predictions ranging from a moderate agreement

(0.53), a substantial agreement (0.63), and a fair

agreement (0.40) for the annual, wet, and dry season

models, respectively. In the puma models, the kappa

coefficient showed a relatively high level of accuracy

with a substantial agreement (0.61), just below the

threshold for a moderate agreement (0.39), and a

moderate agreement (0.56) for the annual, wet, and

dry season, respectively (Table 1).

According to the annual partial dependency plots

(Evans et al. 2011), the highest probability of jaguar

occurrence was associated with a low degree of

secondary forest and a high amount of primary forest

(Fig. 4). Jaguar occurrence decreased drastically as

the extent of the human-inhabited area, coniferous

forest, and fallow increased in the landscape. Proxim-

ity to hydrologic features was associated with higher

jaguar detections, while a non-linear relationship with

elevation indicated a selection of altitudes ranging

between 250 m–500 m during the wet season and

250 m–350 m in the dry season (Figures S1 and S2,

respectively).

The puma model’s partial dependency plots

showed the probability of its occurrence increased

with a greater extent of primary forest and decreasing

extent of secondary forest (Fig. 5). Puma presence was

negatively associated with coniferous forest and

elevations above 250 m and showed little association

with hydrologic features. Pumas had a positive

relationship with agropecuary lands in the annual

model, but not in the wet or dry season models

(Figures S3 and S4, respectively).

Predictive suitability maps

Overall, our habitat suitability maps showed a high

predicted occurrence probability ([ 0.5) for both
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jaguars and pumas in sizeable contiguous forest blocks

that stretch along the northern part of the country from

east to west, suggesting that this is the stronghold for

the two felid species, and highlights the importance of

protected areas and indigenous lands. While eastern

Panama boasts three major protected areas concurrent

with high-quality habitat (Darien National Park, Guna

Yala territory, and Chagres National Park), habitat

suitability declined west of the Panama Canal. Low

quality and highly fragmented habitat may limit the
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Fig. 3 The plots show the variable importance for jaguars

(a) and pumas (b) by season, measured as the increases mean

square error (%IncMSE), representing the deterioration of the

model’s predictive ability when each predictor is replaced in

turn by random noise. Higher %IncMSE values indicate

variables that are more important to the classification
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regional connectivity of felid populations, especially

for jaguars, whose presence is linked to extensive

forest cover at broad scales (Fig. 6).

Correlation and average absolute difference

between models

Consistent with our first hypothesis, the average

correlation for pairs of maps that were puma-puma

(0.52833) was much higher than pairs of maps that

were puma-jaguar (0.31591) (Fig. 7). However, the

correlation for jaguar-jaguar maps (0.31007) was

approximately the same as for puma-jaguar maps.

These results suggest that the puma’s predicted habitat

suitability was relatively stable across the year and

did not significantly differ between wet and dry

seasons; while the annual model across the full year

was highly correlated with the wet season and

moderately correlated with the dry season. However,

for jaguars, the results implied strong seasonality in

habitat suitability, showing a relatively low correlation

between wet and dry seasons (r = 0.2735) and

between the annual and dry seasons (r = 0.2348).

For both species, the wet season models were more

correlated to the annual model than with the dry season

model, or the dry season model correlated with the

annual model. The correlation results imply that the

dry season’s habitat suitability is quite different from

what would be predicted from the wet season or

analysis across the full extent of the year.

Our results did not strongly support our hypothesis

that the average absolute difference would be lowest

for model pairs of the same species; nor that within

species, the absolute average difference between wet-

annual and dry-annual would be lower than between

wet-dry. The average absolute difference between

puma-puma models and jaguar-jaguar models was

higher than the differences between puma-jaguar

models (r = 0.25667, 0.22697, 0.21844, respectively).

The results suggest large differences in the predicted

suitability values between seasonal models for each

species, and these are as big or bigger than the

quantitative differences in pixel-pixel probability

values between puma-jaguar models.

Fig. 4 Partial dependency plots representing each variable’s marginal effect in the annual RF jaguar model. In a partial plot of marginal

effects, only the range of values (and not the absolute values) can be compared between plots of different variables (Cutler et al. 2007).

The gray area indicates the 95% confidence interval, and the red line indicates the mean average. The x and y axes range from 0 to 1
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Discussion

Our study adds to the knowledge provided by prior

studies on sympatric jaguar and puma habitat selec-

tion (Schaller and Crawshaw 1980; Crawshaw and

Quigley 1991; Scognamillo et al. 2003; Silveira 2004;

Cullen Jr et al. 2005; Cullen Jr 2006; Foster 2010;

Sollmann et al. 2012; Palomares 2016; de la Torre

et al. 2017; Alvarenga et al. 2021). These previous

studies documented positive associations of both

species with forest cover and negative associations

with human land use but did not employ multi-scale

optimization or formally compare seasonal habitat

selection differences. The multi-scale optimized anal-

yses provided insight into the range of habitats used in

Panama’s structurally complex tropical montane

cloud forest. Further, we identified the optimal scale

for each habitat characteristic selected by each

species. Our analyses revealed the unique combination

of environmental variables and corresponding scales

important to defining the differences among seasonal

habitat associations for jaguars and pumas. We

observed strong temporal nonstationarity in habitat

suitability patterns, particularly for jaguars. Models

confirmed that these sympatric predators might

engage in spatial coordination to facilitate coexis-

tence, as increased spatial overlap at a given scale in

each season was associated with a diversification of

landcover types. Our models indicated that jaguars

exhibit divergent seasonal habitat use. Wet season

habitat selection was driven by hydrology and topog-

raphy, whereas in the dry season, jaguars primarily

Fig. 5 Partial dependency plots representing each variable’s marginal effect in the annual RF puma model. In a partial plot of marginal

effects, only the range of values (and not the absolute values) can be compared between plots of different variables (Cutler et al. 2007).

The gray area indicates the 95% confidence interval, and the red line indicates the mean average. The x and y axes range from 0 to 1
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select areas of extensive forest cover and low human

impact. Puma habitat selection across the year is tied

to the extent of forest cover and degree of human

impact.

Effects of scale optimization on predicted habitat

suitability

The multi-scale optimization results identified the

main drivers of jaguar and puma habitat suitability

more often at fine scales than broad scales, especially

for jaguars. The variables retained in the puma models

were relatively well balanced between fine and broad

scale. These results were somewhat surprising given

the pattern observed in past work, in which large

carnivores were frequently associated with habitat

features at broad spatial scales (e.g., Mateo-Sanchez

et al. 2014; Rostro-Garcia et al. 2016; Hearn et al.

2018; Macdonald et al. 2018).

Overall, for both species, the most influential and

consistent predictors of habitat selection at a fine scale

were hydrologic and topographic features. Most

(a)

(b)

(c)

(e)

(d)

(f)

Habitat Suitability
High:

Low: 
0   50 100     200

1

0
Fig. 6 Seasonal habitat suitability maps showing the predicted

occurrence of jaguars and pumas in Panama derived from multi-

scale optimized models. Prediction maps a–c are for jaguars and

maps d–f are for pumas (top row is annual, middle row is the wet

season, and the bottom row is the dry season)
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notably, as shown by numerous studies, jaguars were

more associated with hydrologic features (i.e., rivers

and streams) (Sollmann et al. 2012; Nuñez-Perez and

Miller 2019) than were pumas (Zeller et al. 2017).

Selectively, these features may confer advantages for

top predators, offering cover and hunting opportuni-

ties or dispersal and escape pathways. Additionally,

given that the presence of cliffs and steep slopes were

determinants of jaguar and puma habitat, the differ-

ential of preferred elevation for jaguars (200 m–

500 m) and pumas (250 m–300 m)–in the wet sea-

son–is indicative of a selection of resources in areas

with high productivity. During the resource-limited

dry season, jaguars preferred lower elevations, sug-

gesting a concentration in areas of extensive forest

surrounding permanent water bodies (Nowell and

Jackson 1996; Sollmann et al. 2012; de la Torre and

Rivero 2019; Nuñez-Perez and Miller 2019; Alvar-

enga et al. 2021). This preference may explain the

much larger seasonal habitat displacement of jaguars

than pumas, with jaguars shifting habitat selection in

the dry season to areas highly proximal to permanent

water, while pumas remained more widely distributed

in upland areas.

At fine scales, jaguars, unlike pumas, exhibited a

stronger avoidance of human settlements, indicating

the higher vulnerability to human disturbance and

land-use change as compared with pumas (Sunquist

and Sunquist 2002; Scognamillo et al. 2003; Silveira

2004; Foster 2008). Our habitat models indicated that

forest edges, highlighted by the cordilleras in Tala-

manca and San Blas, were strong predictors of habitat

selection by jaguars. Forest edges are known to

provide food availability for carnivores in the tropics,

including pumas, ocelots, margays, and jaguarundis

(Magioli et al. 2014, 2019; Guerisoli et al. 2019).

Therefore, edge habitat may be of great importance to

this felid population; combined with extensive use of

continuous forest, it may provide a matrix of food and

source of cover (Cullen Jr et al. 2013; de la Torre et al

2017; Nuñez-Perez and Miller 2019). Notably, the

edges predicted to be most important for jaguars in our

models were natural edges driven by topographical

features, not anthropogenic edges, which the jaguar,

due to its high sensitivity to human disturbance, likely

avoid (e.g., Foster et al. 2010; Morato et al. 2016;

Jȩdrzejewski et al. 2018).

At a broad scale, extensive primary forest cover

was more related to jaguar habitat suitability than for

puma. Pumas incorporated agropecuary and sec-

ondary forest features into their habitat selection,

while these land cover types were not selected by

jaguars. The selection of vegetation cover types at a

broad scale, as reported for other large carnivores

(e.g., Elliot et al. 2014; Zeller et al. 2017; Hearn et al.

2018), provides critical insight into species’ home

range limitations (Rettie and Messier 2000). In turn, it

reflects the distribution of suitable habitat and exem-

plifies species’ ecological attributes (e.g., diet, tem-

poral activity patterns) on co-occurrence patterns

(Davis et al. 2018), implying broad scale spatial

partitioning among these top predators.

Spatiotemporal change in habitat

among carnivores

The habitat selection models and the resulting habitat

suitability maps show that jaguar and puma habitat

selection was strongly influenced by seasonality and

spatial heterogeneity of resources. Our analysis sug-

gests that the puma’s predicted habitat suitability

remains relatively stable across the year, while the

correlation results for the jaguar suggest seasonality in

the predicted habitat suitability. The degree of

ecological plasticity that these species have evolved

to exploit the available resources in a heterogeneous

landscape may be allowed by substantial seasonal

changes in resource availability. The degree of species

segregation at broad scales may increase with seasonal

precipitation. Since precipitation is positively linked

to plant productivity, distribution, and diversity in

PA PD PW JA JD JW

PA 0.498 0.654 0.3561 0.2605 0.3993

PD 0.3606 0.433 0.2698 0.2288 0.4028

PW 0.1688 0.2406 0.3 0.3246 0.3013

JA 0.1534 0.3989 0.2022 0.2348 0.4219

JD 0.2653 0.2128 0.1534 0.2796 0.2735

JW 0.2426 0.1986 0.1388 0.2544 0.1469

Fig. 7 Correlation (upper triangle), and average absolute

difference (lower triangle) for all pairs of predicted probability

of occurrence maps. Pairs of maps that are both for puma (PA,

PD, PW) are shaded medium grey, both jaguar (JA, JD, JW) are

light grey, and pairs that are jaguar-puma (JA, JD, JW, PA, PD,

PW) comparisons are dark grey
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tropical rainforests, we argue that seasonal spatial

segregation and the degree of precipitation during the

wet season are intimately linked to a seasonal

distribution and abundance of prey. Specifically, the

association of jaguars with water, especially in the dry

season, and spatial shift to lower elevations more

closely tied to water availability in the dry season, are

the main drivers of the seasonal spatial shift of jaguars,

suggesting a high dependence on water, particularly in

seasons of scarcity.

Despite being sympatric, jaguars present a narrower

habitat preference than pumas (Astete et al. 2017). In

line with this assertion, our models showed that pumas

were more versatile in their resource exploitation and

had the most extensive and connected suitable habitat

in both wet and dry seasons. In contrast, the extent of

suitable habitat for jaguars was smaller and largely

overlapped with the puma. Of the two species, the

jaguar is likely more vulnerable to habitat loss and

fragmentation because comparatively, it is a habitat

specialist in Panama. Also, two of its most important

habitat components–water bodies and extensive for-

est–are vulnerable to recent land-use change, which is

likely to continue to spike.

Species segregation is generally expected to

increase with increasing competitive interactions for

limiting resources. Our results point to the association

of specific habitat components at fine spatial scales as

additional drivers of species segregation, leading to

the felids’ adjustment of their spatiotemporal position

to avoid aggressive encounters (de la Torre et al.

2017). Palomares (2016) pointed out that under the

subordinate (puma) and dominant (jaguar) scenario, at

small scales, pumas could avoid jaguars by ‘‘fine-

shifting micro-habitat use.’’ Shifting is evident in our

study, as jaguars and pumas exhibited fine scale spatial

overlap with topographic features (elevation and

slope) (Table 1; Fig. 2). Therefore, while using the

same (micro) habitat, species may segregate along the

fine scale temporal or dietary axis to successfully

avoid or decrease competition and thus maintain

coexistence (Foster et al. 2010; Santos et al. 2019).

Our results indicated that the puma is more of

a generalist than the jaguar, which is more vulnerable

to anthropogenic landscape change, particularly defor-

estation in lower elevations near permanent water,

where deforestation is most concentrated in Latin

America (Hansen et al. 2010).

Temporal nonstationarity in habitat selection

One of the frontiers in habitat modeling is under-

standing the temporal nonstationarity of habitat rela-

tionships and model predictions (e.g., Kaszta et al.

2021). There has been considerable attention paid to

spatial nonstationarity, in which metareplicated stud-

ies are conducted to understand differences in habitat

relationships and limiting factors in different study

areas (e.g., Short Bull et al. 2011; Shirk et al. 2014;

Wan et al. 2019). In contrast, there has been less

attention paid to temporal nonstationarity, except in

terms of comparing seasonal habitat models (e.g.,

Shirk et al. 2014) or post-disturbance changes in

limiting factors (e.g., Cushman et al. 2011). Our

results identified temporal nonstationarity in jaguar

habitat selection, but not in puma habitat selection

(Fig. 5). In tropical regions, food and water availabil-

ity are subject to spatial and temporal variations, and

habitat selection needs to be interpreted in that

context. Thus, in systems with high seasonality of

habitat use (e.g., Shirk et al. 2014), models developed

from occurrence data across the full year may fail to

accurately reflect habitat selection in any season

within the year. These results suggest that for large

felids in Mesoamerica, considering temporal nonsta-

tionarity is important for some species but might not

be relevant for others. Scale has emerged as a focal

area of habitat ecology work, but few studies have

evaluated the effects of temporal scale on predictions

(McGarigal et al. 2016), and we encourage future

research to evaluate further temporal scale relation-

ships in habitat selection.

Overall, our results highlight the importance of

considering the temporal scale and temporal nonsta-

tionarity in habitat modeling and spatial scaling.

Given the high sensitivity of model predictions to

temporal periods and temporal scales, we strongly

suggest habitat modeling studies evaluate and opti-

mize temporal relationships, as has recently become

standard for spatial scale relationships (McGarigal

et al. 2016).

Limitations

Though our data were collected from a relatively small

area (Figs. 1, 2a, b), its geographical location is critical

to range-wide connectivity for the species
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(Rabinowitz and Zeller 2010). Thus, information on

the factors affecting jaguar and puma occurrence in

this landscape is relevant at scales much larger than

our study. However, it is unknown how well our

models would extrapolate to other parts of the species’

ranges. It would be valuable to compare these model

predictions to those from other parts of the species’

ranges using the same methods (Short Bull et al. 2011;

Shirk et al. 2014; Wan et al. 2018), applying multi-

model combined inferences (e.g., Wan et al. 2019).

The study area contains broad ecological, topo-

graphical, and land cover gradients that are character-

istic of each species’ Central American range, so we

conjecture that our models would have predictive and

heuristic value in that part of the range of both species.

This study serves as a baseline for habitat assessment

of the two studied species, and we recommend future

studies to expand into a broader region and to sample

beyond the range of conditions examined in our

sampling area (see Table S1 for the range of sampled

values for each variable). Despite the limited sampling

area and relatively small data set, our models provide

highly accurate and robust predictions of habitat

suitability for jaguars and pumas. The use of HSMs

with machine learning to derive distribution estimates

of rare, difficult to detect species has been underuti-

lized. The application of these tools to predict a

distribution area beyond the sample range is a recent

development in the literature (Mi et al. 2017). Nev-

ertheless, models with few detection samples can

generate accurate species predictive distributions

using the RF method (Mi et al. 2017).

Further, the extrapolation of data from the sampled

area across the country was warranted because of the

urgent need among local agencies to identify potential

locations for future monitoring efforts. We acknowl-

edge that the prediction outside of the sampled area

might not be as accurate as within the sampled area,

though it establishes a starting point to guide these

efforts.

A final potential limitation to the interpretation of

our results relates to the scale optimization. The

approach taken here uses model optimization based on

an objective function based on predictive performance

(OOB). It is intended to identify the operative range of

scales that are relevant to the organism or process

being examined. However, it is not always clear if this

metric successfully identifies the true operative scales.

For example, two recent papers (Atzeni et al. 2020;

Chiaverini et al. 2021) used simulation modeling to

evaluate the ability of scale optimization approaches

such as those used here to correctly identify the

variables and scales at which those variables influence

species occurrence. The results showed the high

ability of the models to predict the probability of

occurrence correctly, but less ability to identify the

correct variables and scales out of a pool of correlated

alternatives. This suggests that future work should be

conducted using a simulation approach that allows

explicit control over the stipulated pattern process

relationships to investigate the performance of differ-

ent modeling methods and approaches to scale

dependence and temporal nonstationarity.
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Zoologia (curitiba) 30:379–387

Cullen L Jr (2006) Jaguars as landscape detectives for conser-

vation in the Atlantic Forest of Brazil. University of Kent

Cushman SA, Wasserman TN (2018) Landscape applications of

machine learning: comparing Random Forests and logistic

regression in multi-scale optimized predictive modeling of

American marten occurrence in Northern Idaho, USA. In:

Humphries G, Magness D, Huettmann F (eds) Machine

learning for ecology and sustainable natural resource

management. Springer, New York, pp 185–203

Cushman SA, Raphael MG, Ruggiero LF, Shirk AS, Wasserman

TN, O’Doherty EC (2011) Limiting factors and landscape

connectivity: the American marten in the Rocky Moun-

tains. Landsc Ecol 26:1137–1149

Cushman SA, Macdonald EA, Landguth EL, Malhi Y, Mac-

donald DW (2017) Multiple-scale prediction of forest loss

risk across Borneo. Landsc Ecol 32:1581–1598

Cutler DR, Edwards TC, Beard KH, Cutler A, Hess KT, Gibson

J, Lawler JJ (2007) Random Forests for classification in

ecology. Ecology 88:2783–2792

Davis CL, Rich LN, Farris ZJ, Kelly MJ, Di Bitetti MS, Di BY,

Albanesi S, Farhadinia MS, Gholikhani N, Hamel S,

Harmsen BJ, Wultsch C, Kane MD, Martins Q, Murphy AJ,

Steenweg R, Sunarto S, Taktehrani A, Thapa K, Tucker

JM, Whittington J, Widodo FA, Yoccoz NG, Miller DAW

(2018) Ecological correlates of the spatial co-occurrence of

sympatric mammalian carnivores worldwide. Ecol Lett

21:1401–1412

de la Torre JA, Rivero M (2019) Insights of the movements of

the Jaguar in the tropical forests of Southern Mexico. In:

Reyna-Hurtado R, Chapman C (eds) Movement ecology of

neotropical forest mammals. Springer, New York,

pp 217–241
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