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A B S T R A C T   

Sampling bias and autocorrelation can lead to erroneous estimates of habitat selection, model overfitting and 
elevated omission rates. We developed a multi-scale habitat suitability model of the flammulated owl (Psiloscops 
flammeolus) in the Northern Rocky Mountains based on extensive but spatially clustered survey data, and then 
used simulations to evaluate the effects of spatially non-representative and spatially representative sampling 
strategies on model performance and predictions. Our hypothesis was that models trained with spatially non- 
representative simulated datasets would suffer from bias in parameter estimates, and would show lower pre-
dictive performance. The models trained with the spatially representative simulated datasets greatly out-
performed the models trained with the spatially non-representative simulated datasets judged on standard 
metrics of model performance. However, the spatially non-representative models produced superior predictions 
based on their ability to identify the correct spatial scales, covariates, signs and magnitudes of the species- 
environment relationships, when compared to the spatially representative models. Thus, it is likely that repre-
sentative spatial sampling across a broad range of environmental gradients also resulted in over-dispersion of 
sampling data, with a higher proportion of samples falling in areas of low probability of presence, leading to 
lower ability to resolve the relationships between species presence-absence and environmental covariates. In 
contrast, the spatially non-representative sampling, by concentrating sampling along environmental gradients 
that are characterized by higher probability of presence of the modelled species, produced predictions that, while 
seeming to be weaker based on standard measures of model performance (e.g., AUC, Kappa, PCC), greatly 
outperformed the spatially representative models based on measures of true model prediction (e.g., correctly 
describing the actual spatial scales, direction and strength of species-environment relationships). Further work 
using simulation approaches is warranted to more fully evaluate the ability of species distribution modelling 
techniques to correctly identify scales, driving covariates, signs and magnitudes of relationships between species 
presence-absence patterns, and environmental covariates.   

1. Introduction 

Species distribution models are a powerful tool for ecological 
research and biodiversity conservation, but they may be uninformative 
or misleading if they fail to identify the relevant factors driving species’ 
habitat selection (Pliscoff et al., 2014; Williams et al., 2012). Moreover, 
there is a longstanding recognition that species-environment 

relationships occur across a range of spatial scales (Levin, 1992; Wiens, 
1989), and assessing environmental factors at a single scale often pro-
duces biased estimates or weaker predictive capacity of models 
(Mateo-Sánchez et al., 2014; Shirk et al., 2014). However, relatively few 
habitat suitability or species distribution modelling studies have rigor-
ously addressed spatial scale issues and even fewer have applied 
multi-scale optimization to reliably describe scale dependencies 
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(McGarigal et al., 2016). 
Another fundamental, yet less studied, issue is how the spatial 

pattern and representativeness of sampling strategies affect species 
distribution models. Sampling bias and autocorrelation can lead to 
biased estimates of habitat selection, model overfitting and elevated 
omission rates, and can falsely inflate AUC values (Kramer-Schadt et al., 
2013; van Proosdij et al., 2016). Several approaches have been proposed 
to mitigate the effects of sampling bias in presence-only models, 
including spatial filtering (Kramer-Schadt et al., 2013), cluster ap-
proaches (Fourcade et al., 2014; Varela et al., 2014), Gaussian kernels 
(Vergara et al., 2016) and background manipulation (Kramer-Schadt 
et al., 2013; Merow et al., 2013; Phillips et al., 2009). However, 
considerably less attention has been paid to sampling bias in 
presence-absence models. A main assumption on which these models 
rely is that data are representative, independent and evenly distributed 
over the study area (Guisan and Zimmermann, 2000; Hirzel and Guisan, 
2002). Effective sampling strategies should be designed to identify those 
environmental gradients that are most influential to habitat selection by 
species (Mohler, 1983; Wessels et al., 1998), rather than being biased 
towards environmental factors unrepresentative of the spectrum of 
conditions in which the species occur. Violation of these assumptions 
can lead to biased estimations of the species-environment relationships 
and to poorly predictive models (Hirzel and Guisan, 2002). 

Randomly stratified strategies are often considered the ideal 
approach to sample species occurrences from a subset of the entire 
population (Rathbun and Gerritsen, 2001). However, randomized sur-
veys are rare because they are often logistically difficult and expensive. 
Surveys of rare and cryptic species are also seldom implemented in 
spatially and ecologically representative ways, as they mainly focus on 
areas where the species are already expected to occur. Therefore, models 
often rely on incomplete and spatially biased datasets, especially to-
wards areas considered a priori suitable for the species, or that are more 
accessible (Kadmon et al., 2004). 

Our first goal was to produce a multi-scale habitat suitability model 
of the flammulated owl (Psiloscops flammeolus) in the Northern Rocky 
Mountains from a dataset collected by the United States Forest Service. 
The dataset showed moderate spatial clustering and spatial unrepre-
sentativeness, since it was collected by surveying along forest roads and 
paths, instead of evenly sampling across the study area. Therefore, the 
dataset does not provide an unbiased representation of all ecological 
conditions across the study area. Relatively little is known about the 
distribution of many forest owl species, due to their nocturnal habits, 
cryptic behaviour and, in some cases, rarity (Johnson et al., 1981). 
Anthropogenic disturbance can negatively affect owl populations 
(Wisdom et al., 2000), and the flammulated owl is listed as a sensitive 
species throughout the western United States, and a species of concern in 
Canada. The species is mostly restricted to forests of commercially 
valuable tree species (e.g., ponderosa pine and Douglas fir), where it 
nests in cavities often associated with mature forest stands (McCallum, 
1994a). Furthermore, ecological knowledge on this species is limited; 
there are relatively few rigorous studies of its habitat ecology and dis-
tribution, and most publications are anecdotal accounts. 

Our second goal was to evaluate how the spatial sampling bias of the 
dataset potentially affected the results of the habitat suitability model. 
We conducted a simulation experiment in which we stipulated the 
predicted probability model produced with empirical data to reflect the 
actual probability of occurrence pattern. Then, we simulated new 
presence-absence datasets, reflecting the probability of presence of the 
empirical model. The new datasets were produced by (1) sampling the 
same locations surveyed in the United States Forest Service design, 
therefore introducing the same spatial bias and unrepresentativeness 
that affected the survey, and (2) randomly distributing the same number 
of United States Forest Service survey locations across the study area, 
producing a spatially representative dataset in which all the environ-
mental conditions characterizing the study area were equitably repre-
sented. We then refitted models using the simulated datasets and 

evaluated the effects of the spatial bias on models’ performances and 
predictions. Our hypothesis was that models trained with spatially non- 
representative datasets would suffer from bias in parameter estimates, 
and would show lower predictive performance. 

2. Materials and methods 

2.1. Study area 

The study area consists of western Montana, northern Idaho and a 
small portion of north-western Wyoming, encompassing over 31.8 
million hectares of the United States Northern Rocky Mountains 
(Figure 1). Public lands managed by United States federal agencies (e.g., 
Forest Service, Fish and Wildlife Service, Bureau of Land Management, 
National Park Service, etc.) comprise approximately 45% of total study 
area. Private lands and human population are concentrated in large 
valleys between major mountain ranges. Human population is growing 
more rapidly in this region than most areas of the United States. The 
continental divide, following the crest of the Rocky Mountains, sepa-
rates the maritime climate on the west, with higher precipitation and 
lower seasonal temperature ranges, from a colder and drier continental 
climate to the east with greater seasonal temperature extremes. Major 
vegetation types west of the continental divide include extensive forests, 
comprised of ponderosa pine in the drier sites, Douglas fir, western larch 
and lodgepole pine at intermediate sites, subalpine fir and Engelmann 
spruce in cool wet sites and grand fir, western hemlock and western red 
cedar in warm moist sites. At the lowest elevations and driest sites, 
natural grasslands occur. Dominant vegetation east of the continental 
divide is dominated by mixed grass prairies (e.g., wheatgrass, bluestem 
and needlegrass), big sagebrush shrublands, steppe (e.g., bluebunch 
wheatgrass) on lower elevation sites, and forests, dominated by Douglas 
fir and lodgepole pine, at middle to upper elevations. The mean eleva-
tion of the study area is 2,048m, ranging from ~200m in the Nez Perce- 
Clearwater National Forest in Idaho to ~3,900m at Granite Peak in 
Montana. 

2.2. Presence-absence locations 

The United States Forest Service Northern Region collected flam-
mulated owl presence-absence data in 2005 and in 2008 through a 
survey that included spatial bias, since it was mainly focused in forested 
areas where the species was expected to potentially occur, and along 
forest roads and paths. The dataset was collected following a stan-
dardized protocol (Fylling et al., 2010): nocturnal surveys were carried 
out during incubation and brooding periods, between mid-May and late 
June. Surveyors spent a total of 10 minutes at each survey location, 
divided into five 2-minute intervals. Two minutes of silent listening at 
the beginning were followed by four intervals of calling and listening, 
during which the first 30 seconds were spent broadcasting a 
pre-recorded standardized flammulated owl call, pointing the caller in 
each of 4 cardinal directions, and the remaining 90 seconds listening. 
When an owl was detected, the surveyor recorded the survey location, 
the bearing using a compass and the distance from the survey point. 

For training and validating the distribution model, we used two 
different presence-absence datasets. To train the model, we used owl 
data collected in 2005 (n= 2,688; 243 presences, 2,439 absences and 6 
locations with missing occurrence information). We removed points 
with missing coordinates and with missing occurrence information. 
Since a small number of locations (n= 225) were sampled ~150km 
away from the main survey area, we removed these points to reduce 
potential over-dispersion. We also removed locations ≤10km of the edge 
of the study area to avoid boundary problems in multi-scale analysis. 
The final training dataset had 2,428 points (242 presences and 2,186 
absences). To validate the model, we used the owl data collected in 2008 
(n= 1,811; 177 presences and 1,634 absences). We removed points 
applying the aforementioned criteria, obtaining a final validation 
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dataset of 1,809 points (177 presences and 1,632 absences). 

2.3. Environmental covariates 

We selected a preliminary set of 21 covariates, considered important 
to habitat selection by flammulated owl (Christie and van Woudenberg, 
1997; McCallum, 1994a, b). These included 13 landscape, 5 topographic 
and 3 climatic covariates. Landscape covariates included: (1) Douglas fir 
(Pseudotsuga menziesii) aggregation index, (2) Douglas fir edge density, 
(3) Douglas fir mean edge proximity, (4) percent of landscape covered 
by Douglas fir, (5) ponderosa pine (Pinus ponderosa) aggregation index, 
(6) ponderosa pine edge density, (7) ponderosa pine mean edge prox-
imity, (8) percent of landscape covered by ponderosa pine, (9) forest 
aggregation index, (10) forest edge density, (11) forest mean edge 
proximity, (12) percent of landscape covered by forest and (13) tree 
canopy cover. All landscape covariates were derived from LANDFIRE 
Existing Vegetation Type layer (LANDFIRE, 2005), with the exception of 
tree canopy cover, derived from Hansen et al. (2013). To calculate 
Douglas fir and ponderosa pine metrics, we created 30m resolution bi-
nary layers by aggregating all pixels classified as “Interior Douglas-Fir” 
and “Interior Ponderosa Pine”, respectively, in the SAF-SRM Cover Type. 
We combined all pixels classified as “tree-dominated” in NVCS and 
created a binary map to calculate forest metrics. 

We used FRAGSTATS (McGarigal et al., 2012) to calculate metrics 
for the Douglas fir, ponderosa pine and forest maps described above. 
Aggregation index (AI) measures the extent to which patches are 
aggregated or clumped, by summing, over the landscape elements, the 
products of the probability that a randomly chosen cell belongs to 
landscape element i, with the conditional probability that, given a cell is 
of landscape element i, one of its neighbouring cells belongs to landscape 
element j. Edge density (ED) measures the density of the edge segments 
of the corresponding landscape element, by calculating the total length 
of the edge segments over all the patches of the landscape element i and 
dividing it by the total landscape area. Mean edge proximity (PROX_MN) 
measures the degree of isolation and fragmentation of the corresponding 
landscape element, by summing, over all the patches of the landscape 
element i whose edges are within the search radius of the focal patch, 
each patch size divided by the square of its distance from the focal patch. 

Percentage of landscape (PLAND) measures the proportional abundance 
of the corresponding landscape element in the landscape, by summing 
the areas of all patches of the corresponding landscape element i and 
dividing it by the total landscape area. 

Topographic covariates included: (1) elevation, (2) slope, (3) aspect, 
(4) slope position and (5) roughness. All topographic covariates were 
derived from the LANDFIRE Digital Elevation Model layer (LANDFIRE, 
2005). Slope and aspect were calculated using the DEM Surface Tools 
(Jenness, 2013) in ArcMap v10.6.1. We applied a cosine transformation 
to the aspect layer to obtain continuous values ranging from -1 (due 
south) to +1 (due north), and we classified flat areas to 0. Slope position 
and roughness layers were derived using the Geomorphometry & 
Gradient Metrics toolbox (Evans et al., 2014) in ArcMap, by imple-
menting a circular moving window of 90m radius, corresponding to 3 
pixels, to the original elevation layer, maintain the high resolution of the 
source layer. 

Climatic covariates included: (1) cumulative annual degree-days 
(using a 10◦C threshold), (2) spring precipitation (defined as 
February-May precipitations) and (3) summer precipitation (defined as 
June-October precipitations). All climatic covariates were derived from 
Recent Years PRISM climate data (PRISM Climate Group, 2016). All 
covariate layers were resampled at 30m resolution. 

2.4. Univariate scaling and multicollinearity analysis 

To select the most representative scale for each covariate, we 
calculated metrics at each sampling location using bandwidths from 
100m to 5,000m at 100m interval, for a total of 50 scales (Wan et al., 
2017). For landscape covariates, we assessed the aforementioned met-
rics in FRAGSTATS at different scales, while for topographic and cli-
matic covariates we calculated focal mean at different scales by applying 
neighbourhood analyses in ArcMap. In all cases, we used a uniform 
moving window. We then performed a binomial generalized linear 
model (GLM) using lme4 package (Bates et al., 2015) in R v3.5.1 (R Core 
Team, 2018), independently at each scale. We compared models using 
Akaike’s Information Criterion corrected for small sample size (AICc) 
and the proportion of deviance explained, retaining only the most 
parsimonious and explanatory scale for each covariate. 

Figure 1. Study area orientation map showing sampling locations.  
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We then checked for multicollinearity calculating Pearson’s corre-
lation index between each pair of covariates at their best scale. When 
two covariates were highly correlated (|r|≥ 0.7), we dropped the co-
variate whose univariate GLM showed the greatest AICc. Finally, we 
calculated variance inflation factor (VIF) among the remaining cova-
riates, ensuring that none of them had VIF≥ 3 (Zuur et al., 2009), which 
is a conservative threshold ensuring a high degree of independence 
among predictor variables. 

2.5. Multi-scale modelling and spatial autocorrelation 

We conducted an all-subsets logistic regression analysis using the 
MuMIn package (Bartoń, 2013) in R v3.5.1 to produce model average 
coefficient estimates on the final suite of covariates. However, first, we 
checked for spatial autocorrelation by applying Moran’s I test to the 
model including the full set of covariates, by using the spdep package 
(Bivand and Piras, 2015). We then corrected for residual spatial auto-
correlation by adding a spatial autocovariate term (SAC) and forcing it 
into all subset models. 

We ranked the candidate models using AICc and Akaike’s model 
weight (wi), retaining only those with ΔAICc≤ 2 to represent competing 
models (Burnham and Anderson, 2002). We calculated the parameter 
estimates of each covariate by averaging the estimates from the suite of 
competing models, according to the respective wi. Using these estimates, 
we created a map predicting probability of detecting flammulated owl 
presence across the study area. 

2.6. Model performance 

To evaluate the explanatory power of the final model, we calculated 
the proportion of deviance explained, model-averaged parameter esti-
mates and 95% confidence intervals, as well as AIC variable importance. 
To further inspect the importance of each covariate, we sequentially 
removed each covariate (with replacement) and evaluated the reduction 
in deviance explained. We divided that reduction by the total deviance 
explained by the model, to obtain the percent drop in deviance 
explained for each covariate. We then evaluated the model’s predictive 
performance by calculating the percent correctly classified (PCC), 
sensitivity, specificity, Kappa statistics and area under the ROC curve 
(AUC). We calculated these metrics using an independent dataset, 
providing more robust measures of predictive performance (Fielding 
and Bell, 1997). Threshold-dependent measures of model performance 
(i.e., PCC, sensitivity, specificity and Kappa statistics) were calculated 
by selecting a cut-off value aimed at maximizing Kappa statistics, and we 
used the PresenceAbsence package (Freeman and Moisen, 2007) to 
determine the optimal threshold value. 

2.7. Simulation analyses 

To investigate the effects of the non-random nature of the survey 
data on the model performance, we used simulated data to compare the 
effects of spatially representative and non-representative sampling on 
model prediction and performance. First, we simulated 10 random raster 
layers with the same extent of the predicted probability map (hereafter 
empirical model), and pixel values uniformly distributed between 0 and 
1. We then subtracted these layers from the empirical model, and 
assigned 0 to cells with negative values and 1 to cells with positive 
values. We treated 0 and 1 on these binary maps as random represen-
tation of potential presence-absence locations, assuming the empirical 
model to reflect the actual presence pattern of the species (Cushman 
et al., 2016; Cushman et al., 2017). Then, from each map, we randomly 
sampled the same number of locations used to train the empirical model 
(n= 2,428), producing ten different pseudo-presence-absence datasets 
(hereafter spatially representative datasets; Table S1). We also sampled 
from each map the same sampling locations used to train the empirical 
model, obtaining ten different pseudo-presence-absence datasets 

(hereafter spatially non-representative datasets; Table S1). We developed a 
multi-scale model for each simulated dataset using the same modelling 
framework described for the empirical model. 

To compare the models trained with the representative and non- 
representative datasets, we first explored the results of the univariate 
scaling analyses to examine whether the best scales were different. Then, 
we compared the parameter estimates of the covariates, focusing on the 
signs and the magnitudes. To compare models’ predictive performances, 
we simulated another random raster with the same extent of the 
empirical model, using the same procedure as described above to pro-
duce a binary presence-absence layer. To calculate the predictive per-
formances of the spatially representative models, we randomly sampled 
the same number of locations used to validate the empirical model (n=
1,809), obtaining a pseudo-presence-absence dataset. To calculate the 
predictive performances of the spatially non-representative models, we 
sampled the same sampling locations used to validate the empirical 
model, obtaining another pseudo-presence-absence dataset. To compare 
models’ predictive performances, we calculated PCC, sensitivity, speci-
ficity, Kappa statistics and AUC for the 20 simulations. A comprehensive 
workflow diagram of the methodologies applied is provided in Figure 2. 

3. Results 

3.1. Univariate scaling analysis and spatial autocorrelation 

The scales showing the lowest AICc always corresponded to the 
scales with the highest proportion of deviance explained in the univar-
iate scaling analyses (Figure S1). Landscape covariates showed a broad 
range of optimal scales. The four forest covariates and tree canopy cover 
were selected at broad scales (4,900m-5,000m). Aggregation index and 
edge density of Douglas fir and ponderosa pine were selected at mid to 
broad scales (2,600m-5,000m), while edge proximity was selected at 
finer scales (1,700m for Douglas fir and 100m for ponderosa pine). 
Percentage of landscape showed an opposite pattern between Douglas 
fir and ponderosa pine, being selected at 400m and 4,900m, respec-
tively. Topographic covariates also showed a broad range of optimal 
scales. Elevation was selected at the smallest scale assessed (100m), 
while aspect and slope were selected at mid scales (1,000m and 2,300m, 
respectively). Topographic indexes were selected at mid to broad scales 
(1,200m for slope position and 4,300m for roughness). All climate 
covariates were selected at the broadest scale assessed (5,000m). Nine 
covariates were excluded as a result of the multicollinearity analyses 
(Table 1). 

Moran’s I analysis indicated spatial autocorrelation in the flammu-
lated owl data (observed Moran’s I= 0.33, p< 0.001). Hence, we cor-
rected the multi-scale model by adding a spatial autocovariate term 
(SAC) into the final model. The correction produced a considerable 
reduction in spatial autocorrelation (observed Moran’s I= -0.05, p=
0.13) (Figure 3). 

3.2. Habitat covariates and multi-scale model 

The multi-scale model consisted of twelve covariates, excluding 
intercept and SAC (Figures S2-S13; Table 1). The suite of top models 
included 10 models (Table 2). After model averaging, most covariates 
showed AIC variable importance= 1.00, except forest aggregation index 
(0.82), spring precipitation (0.75), Douglas fir aggregation index (0.51), 
ponderosa pine edge density (0.25) and elevation (0.06) (Table 3). 

Douglas fir percent cover, ponderosa pine aggregation index, pon-
derosa pine edge density, ponderosa pine edge proximity, slope and 
slope position were positively related to flammulated owl habitat se-
lection, whereas Douglas fir aggregation index, forest aggregation index, 
elevation, aspect, spring precipitation and summer precipitation were 
negatively related to flammulated owl detection (Table 3). Douglas fir 
percent cover was the most important covariate in the model, showing 
the greatest drop in model deviance explained (5.41%), followed by 

L. Chiaverini et al.                                                                                                                                                                                                                              



Ecological Modelling 450 (2021) 109566

5

slope position (3.32%), slope (2.33%), Ponderosa pine aggregation 
index (1.62%) and summer precipitation (1.48%). Elevation was the 
least important covariate, showing minor drop in model deviance 
explained (0.03%) (Figure 4; Table 3). 

3.3. Model performance 

Deviance explained by the final model was 0.29. The optimal 
threshold for maximizing Kappa statistics was 0.25 (Figure S14; 
Table 4). We used this as the cut-off for assessing validation metrics. The 
model correctly classified 75% of the independent validation data and 
had Kappa= 0.16. The model showed higher specificity than sensitivity 

(0.78 and 0.49, respectively). AUC was 0.68, indicating moderate 
discrimination between presence and absence points. The map of the 
predicted probability of flammulated owl presence is shown in Figure 5. 

3.4. Simulation analyses – Single-scale models 

The single-scale analyses for the spatially representative simulated 
datasets showed substantial variation in the most representative scales 
for each covariate among the iterations (Figure S15; Table 5), and 
compared to the empirical model (Table S2). Across the iterations, only 
one covariate always showed the same best scale as the empirical model, 
and two covariates differed from the empirical model by less than 100m. 
Eight covariates showed best scales differing between 100m and 1,000m 
from the empirical model, while 10 covariates showed differences 
>1,000m. 

The single-scale analyses for the spatially non-representative 

Figure 2. Workflow diagram of the methodologies applied to produce the empirical model and to simulate the spatially representative and the spatially non- 
representative models. 

Table 1 
Primary set of covariates selected to model flammulated owl presence, based on 
the empirical model.  

Class  
Covariate  Description  Best scale (m) 

Landscape DFc Douglas fir aggregation index 5,000  
DFed* Douglas fir edge density 2,600  
DFp* Douglas fir edge proximity 1,700  
DFpl Douglas fir percent cover 400  
PPc Ponderosa pine aggregation index 3,100  
PPed Ponderosa pine edge density 5,000  
PPp Ponderosa pine edge proximity 100  
PPpl* Ponderosa pine percent cover 4,900  
Fc Forest aggregation index 5,000  
Fed* Forest edge density 5,000  
Fp* Forest edge proximity 4,900  
Fpl* Forest percent cover 5,000  
Han* Tree canopy cover 5,000 

Topographic DEM Elevation 100  
S Slope in degree 2,300  
A Aspect from -1 to +1 1,000  
SP Slope position index 1,200  
R* Roughness index 4,300 

Climate CDD* Cumulative annual degree-days 5,000  
SpP Spring (Feb – May) precipitation 5,000  
SuP Summer (Jun – Oct) precipitation 5,000 

* Covariates excluded from the empirical model after the multicollinearity and 
VIF analyses. 

Figure 3. Assessment of the effectiveness of the spatial autocovariate (SAC) 
approach to reduce spatial autocorrelation of residuals. 
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datasets showed lower differences in the most representative scales 
selected among the iterations (Figure S15; Table 5) and compared to the 
empirical model (Table S2). Five covariates always showed the same 
best scales as the empirical model, while 3 covariates diverged by less 
than 100m. Eight covariates showed differences between 100m and 
1,000m, and 5 covariates diverged by >1,000m. 

3.5. Simulation analyses – Covariates selection and spatial 
autocorrelation 

Douglas fir aggregation index, ponderosa pine aggregation index, 
aspect, slope position and summer precipitation were the only cova-
riates retained in all the spatially representative iterations. Nine cova-
riates were retained in at least 50% of the iterations, while seven 
covariates occurred in <50% of the iterations (Table S3). A spatial 
autocovariate term (SAC) was added when the corrected multi-scale 
model showed a less significant Moran’s I value than the uncorrected 
model. We added a SAC term in 5 out of 10 models. 

Douglas fir aggregation index, Douglas fir percent cover, ponderosa 

pine aggregation index, ponderosa pine edge proximity, aspect, slope 
position, spring precipitation and summer precipitation occurred in all 
the spatially non-representative iterations. Seven covariates were 
retained in at least 50% of the iterations, while six covariates occurred in 
<50% of the iterations (Table S3). After checking for spatial autocor-
relation, we added a SAC term in 3 out of 10 models. 

3.6. Simulation analyses – Multi-scale models 

Among the spatially representative models, the covariates showing 
the biggest differences in the averaged standardized coefficients be-
tween the empirical and the simulated model were slope and elevation 
(0.16 and 0.13, respectively). The covariates showing the smallest dif-
ferences were slope position and summer precipitation (0.0016 and 
0.0125, respectively) (Figure S16; Table 6). Douglas fir aggregation 
index, ponderosa pine edge density, elevation, slope and spring pre-
cipitation’s coefficients showed an opposite sign to the empirical 
model’s coefficients in the 0.30%, 0.11%, 0.50%, 0.14% and 0.33% of 
the iterations, respectively (Table 6). 

Among the spatially non-representative models, the covariates 
showing the biggest differences in the averaged standardized co-
efficients were ponderosa pine aggregation index and slope (0.18 for 
both). The covariates showing the smallest differences were Douglas fir 
percent cover and elevation (0.0014 and 0.0036, respectively) 
(Figure S16; Table 6). Douglas fir aggregation index and elevation 
showed an opposite sign to the empirical model’s coefficients in the 
0.30% and 0.50% of the iterations, respectively (Table 6). 

3.7. Simulation analyses – Model performance 

Among both the spatially representative and the spatially non- 
representative models, the covariates showing the widest discrep-
ancies in drop of deviance explained from the empirical model were 
Douglas fir percent cover and slope position (10.34 and 5.16, respec-
tively, for the spatially representative iterations; 12.78 and 10.99, 
respectively, for the spatially non-representative iterations) (Table S4). 
Douglas fir percent cover and slope position were, respectively, the first 
and the second most important covariates in the empirical model and 
they represented the most important covariates also in both simulated 
models. The covariates showing the smallest differences in drop of 
deviance explained were Douglas fir aggregation index among the 
spatially representative models (0.39), and elevation among the 
spatially non-representative models (0.07). 

For assessing validation metrics, we used different optimal thresh-
olds to maximize each models’ Kappa statistics (Table 7). The simulated 
spatially representative models correctly classified, on average, 91% of 
the validation points and had mean Kappa statistics of 0.32. Models 
revealed, on average, higher specificity than sensitivity (0.95 and 0.42, 
respectively). Mean AUC was 0.82. Spatially representative models 
showed much higher apparent predictive performance when compared 
to the empirical model. All the simulated models showed higher PCC, 

Table 2 
Top multi-scale models selected for the final averaged empirical model, ranked by AICc. Only models with ΔAICc< 2 were selected. Proportion of deviance explained 
(D2), absolute AICc, ΔAICc and AICc weights (wi) of each model are provided. SAC represents the spatial autocovariate term.  

Models  
D2  AICc  ΔAICc  wi 

DFc+DFpl+PPc+PPp+Fc+S+A+SP+SpP+SuP+SAC 0.29 1,146.13 0.00 0.17 
DFpl+PPc+PPp+Fc+S+A+SP+SpP+SuP+SAC 0.29 1,146.17 0.04 0.17 
DFc+DFpl+PPc+PPp+S+A+SP+SpP+SuP+SAC 0.29 1,147.09 0.96 0.10 
DFpl+PPc+PPed+PPp+Fc+S+A+SP+SpP+SuP+SAC 0.29 1,147.19 1.05 0.10 
DFc+DFpl+PPc+PPp+Fc+S+A+SP+SuP+SAC 0.29 1,147.20 1.07 0.10 
DFpl+PPc+PPp+Fc+S+A+SP+SuP+SAC 0.28 1,147.64 1.51 0.08 
DFc+DFpl+PPc+PPed+PPp+Fc+S+A+SP+SpP+SuP+SAC 0.29 1,147.73 1.60 0.08 
DFpl+PPc+PPp+S+A+SP+SpP+SuP+SAC 0.28 1,147.77 1.64 0.07 
DFpl+PPc+PPed+PPp+Fc+S+A+SP+SuP+SAC 0.29 1,147.91 1.78 0.07 
DFc+DFpl+PPc+PPp+Fc+DEM+S+A+SP+SpP+SuP+SAC 0.29 1,148.13 2.00 0.06  

Table 3 
Representative scale, model averaged parameter coefficients, standard error 
(SE), variable importance (VI) and percentage of deviance explained by the 
covariates retained in the empirical model.  

Covariate  
Scale  Coefficient (± SE)  VI  Deviance 

explained 
Intercept NA -3.25E+00 

(±1.30E-01) 
1.00 NA 

Douglas fir aggregation 
index 

5,000 -1.11E-01 
(±1.54E-01) 

0.51 0.20 

Douglas fir percent 
cover 

400 5.40E-01 (±1.13E- 
01) 

1.00 5.41 

Ponderosa pine 
aggregation index 

3,100 3.52E-01 (±1.60E- 
01) 

1.00 1.62 

Ponderosa pine edge 
density 

5,000 3.33E-02 (±9.45E- 
02) 

0.25 0.06 

Ponderosa pine edge 
proximity 

100 1.83E-01 (±6.66E- 
02) 

1.00 1.31 

Forest aggregation 
index 

5,000 -1.99E-01 
(±1.45E-01) 

0.82 0.37 

Elevation 100 -3.78E-04 
(±2.67E-02) 

0.06 0.03 

Slope 2,300 3.38E-01 (±1.06E- 
01) 

1.00 2.33 

Aspect 1,000 -1.71E-01 
(±8.25E-02) 

1.00 0.84 

Slope position 1,200 3.13E-01 (±8.06E- 
02) 

1.00 3.32 

Spring precipitation 5,000 -1.98E-01 
(±1.68E-01) 

0.75 0.41 

Summer precipitation 5,000 -3.11E-01 
(±1.25E-01) 

1.00 1.48 

SAC NA 7.04E+02 
(±5.89E+01) 

1.00 NA  
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Kappa statistics and AUC values than the empirical model. 
The simulated spatially non-representative models correctly classi-

fied, on average, 70% of the validation points and had mean Kappa 
statistics of 0.18. Models showed, on average, higher specificity than 
sensitivity (0.77 and 0.42, respectively). Mean AUC was 0.66. Spatially 
non-representative models did not show strong variation in predictive 
performance when compared to the empirical model. PCC, Kappa sta-
tistics and AUC values were comparable to the empirical model. 

Among the spatially representative iterations, the covariates with the 
biggest differences in variable importance were ponderosa pine edge 
density and slope (0.43 and 0.37, respectively). The covariates showing 
the smallest differences were Douglas fir percent cover, ponderosa pine 
aggregation index and slope position, which occurred in all the itera-
tions and showed AIC variable importance= 1.00, identically to the 
empirical model (Table S5). 

Among the spatially non-representative models, ponderosa pine edge 
density and spring precipitation showed the biggest differences in var-
iable importance (0.33 and 0.19, respectively). The covariates with the 
smallest differences were Douglas fir percent cover, ponderosa pine edge 

proximity and slope position, showing an AIC variable importance=
1.00, as in the empirical model (Table S5). 

4. Discussion 

Spatial bias is likely to affect distribution models if the strategy 
implemented in data collection is based on non-random sampling, 
potentially leading to poorly predictive inferences (Hirzel and Guisan, 
2002). Nevertheless, random sampling is rare for a number of practical 
and economic reasons. Evenly sampling large study areas can be logis-
tically demanding and very expensive, especially when the focal species 
are rare and cryptic, or when the habitat is not easily accessible. Hence, 
many datasets are often collected from relatively easily accessible areas 
(e.g., roads, paths and rivers), rather than systematic or random sam-
pling. Models produced with biased datasets over-represent certain 
environmental features reflecting sampling effort rather than the true 
potential distribution of the species (Kadmon et al., 2004; Phillips et al., 
2009), potentially leading to inappropriate management decisions 
(MacKenzie, 2005; Phillips et al., 2009). We sought to test the hypoth-
esis that models trained with spatially non-representative datasets 
would suffer from bias in parameter estimates and would show lower 
predictive performance and variance explained, starting from an 
empirical model trained with a spatially biased dataset. 

4.1. Differences in model performance 

The models trained with the spatially representative datasets 
appeared to greatly outperform the models trained with the spatially 
non-representative datasets, in relation to all the assessed metrics. The 
spatially non-representative simulations had much lower PCC than the 
spatially representative simulations, and comparable to the empirical 
model. AUC and Kappa statistics also confirm that the spatially repre-
sentative models greatly outperformed the spatially non-representative 
ones. Specifically, the former produced AUC values generally 

Figure 4. Flammulated owl detection frequencies in response to the covariates retained in the final empirical model.  

Table 4 
Empirical model performances. Sensitivity represents the number of correctly 
predicted presence locations divided by the total number of presence locations 
(true positive fraction). Specificity represents the number of correctly predicted 
absence locations divided by the total number of absence locations (true nega-
tive fraction). Kappa represents the percent improvement over random classi-
fication. Area under the curve (AUC) and deviance explained are threshold- 
independent measures of model performance.  

Model  
PCC  Kappa  Sensitivity  Specificity  AUC  Deviance 

explained 
Empirical 

model 
0.75 0.16 0.49 0.78 0.68 0.29  
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considered to represent strong discrimination between presences and 
absences, whilst the latter produced AUC associated with poor to fair 
discrimination. The AUC of the empirical model is comparable to the 
spatially non-representative one. Moreover, the spatially non- 
representative models produced Kappa statistics associated with a 
very low improvement of their classification abilities over a random 
model, similar to the empirical model. Kappa statistics produced by the 
spatially representative models indicated better classification ability. 
These results seem to demonstrate that spatially non-representative 
datasets lead to poorly predictive distribution models, while unbiased 
sampling strategies produce stronger models in terms of their ability to 
correctly discriminate between presences and absences. 

However, the main concern in using spatially non-representative 
data is that these models will likely lead to incorrect and biased pre-
dictions. The model performance statistics chosen may not reflect the 
true performance of the models in making predictions in cases where 
they are developed using differently distributed training and validation 
samples, as in our case. For the first time in any evaluation we have seen, 
our analysis quantifies the discrepancies of model performance statistics 
and model prediction success as influenced by the spatial pattern of 
sample points. (1) We can assess the effect of sampling bias on the scales 
selected in the multi-scale optimization. (2) We can compare the sets of 
covariates retained. (3) We can compare the signs of the coefficients. (4) 
We can compare the magnitude of the coefficients, between the 
empirical and the simulated models. 

4.2. Bias in scale selection 

The univariate analyses produced significant differences in the se-
lection of the best scales between the spatially representative and the 
spatially non-representative simulations, as well as compared to the 
empirical model. Spatially non-representative data sets provided a more 
constant set of best scales, compared to the spatially representative 
simulations, where only one covariate showed the same best scale across 
the iterations. These results can be due to the more homogenous and 
clustered distribution of the spatially non-representative locations in the 
study area, compared to the random distribution of the spatially repre-
sentative locations. 

When compared to the best scales shown by the empirical model, the 
spatially non-representative simulations showed substantially greater 
accuracy than the spatially representative simulations. The covariates 
showing the same best scales across the spatially non-representative it-
erations were also coherent with the best scale of those covariates in the 
empirical model. 

Overall, and contrary to our expectations, the non-representative 
simulated models produced predictions for each covariate that were 
more consistent across iterations and more similar to the scales of the 
empirical model, which was stipulated as the true probability surface for 
the simulations. We expected that sampling a broader range of ecolog-
ical gradients in a representative way would improve the ability of the 
models to correctly identify the scales of relationship. However, sam-
pling randomly also resulted in a higher proportion of samples falling in 
areas of low probability of presence, and the lower number of simulated 
detections likely resulted in lower ability to resolve the scale dependent 
relationships between each covariate and flammulated owl occurrence. 
These observations could have profound implications for citizen science, 
particularly common for avian species (e.g., eBird (Sullivan et al., 
2009)). Data collected through citizen science projects have often been 
criticized for their spatial bias (Boakes et al., 2010). Although the risk of 
producing predictive maps that are biased towards easily accessible 
areas is still concrete (Kadmon et al., 2004), our results demonstrated 
that spatially non-representative data can provide accurate predictions 
of species-habitat relationships, encouraging the use of citizen science 
data collections. 

4.3. Bias in covariates selected, signs and coefficients 

The spatially representative and the spatially non-representative 
simulations showed discrepancies with the empirical model in the sets 
of covariates retained by the models, and in their coefficients. The 
spatially non-representative models again had much closer match to the 
empirical model on which they were trained. The non-representative 
models were more similar, on average, to the empirical model in 
terms of covariates selected, magnitude of coefficients and had fewer 
covariates that changed sign (i.e., direction of relationship). 

Importantly, the non-representative models were more consistent 

Figure 5. Map of the predicted probability of occurrence for flammulated owl based on the empirical model.  
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among iterations, and closer to the results of the empirical model in the 
covariates selected, and the magnitude and sign of coefficients. This was 
unexpected, as we thought that the spatially representative models 
would better capture the range of environmental conditions and provide 
more resolved predictions of the covariates driving the relationships and 
their relative effects (i.e., coefficients). We believe that the representa-
tive sampling actually was less able to resolve models due to the over- 
dispersion of the sampling locations, which covered many areas of 
low-quality habitat with very low probability of presence. The non- 
representative sampling might have performed better in producing 
more resolved and correct models because the sampling strategy was 
intentionally concentrated in areas with relatively high suitability for 
flammulated owl, and the training data had a better mixture of occur-
rences and absences, which improved the ability of the models to 
correctly fit the relationships inherent in the data. 

4.4. Differences between model performance 

Models built with spatially representative sampling greatly out-
performed those built with non-representative sampling, based on 
standard measures such as AUC, PCC and Kappa statistics. However, 

models built with non-representative sampling more correctly identified 
the scales of relationship, the covariates in the models, and the magni-
tude and sign of the coefficients. This is a critical point. The apparent 
superiority of the representative models in model performance and the 
apparent superiority of the non-representative models in model pre-
diction we believe are both caused by the same factors. 

Specifically, the representative models had higher performance 
because the training and the validation datasets were both sampled over 
broad gradients with large differences between probability of presence 
in samples where flammulated owls were simulated to occur and those 
where they were simulated to not occur. This results in strong discrim-
ination between presences and absences using AUC, PCC and Kappa 
statistics. At the same time, the non-representative models had sampling 
clustered in areas of the landscape with intermediate to high probability 
of presence, leading to lower ability to discriminate between presences 
and absences. As a result of the same sampling pattern, however, the 
non-representative models were more correct in terms of the scales, 
covariates and coefficients because, as noted above, they had a better 
balance between presences and absences clustered along ranges of the 
predictor covariates where the occurrence probabilities change along 
the threshold between presences and absences. This improves the model 

Table 5 
Representative scales of the covariates from (a) the spatially representative and (b) the spatially non-representative models used for the cross-validations of the 
empirical model. Shown are the mean scales, the absolute differences between the mean scales and the empirical model’s best scale and the p-value of the Wilcoxon test 
between the simulated models’ best scales and the empirical model’s best scale.  

a)     
Covariate Best scale (m) Mean (m) Difference (m) Wilcoxon test p-value 
DFc 5,000 5,000 5,000 5,000 4,900* 5,000 5,000 5,000 5,000 5,000 4,990 10 1.00E+00 
DFed 5,000* 2,900* 4,700* 1,900* 4,500* 4,700* 5,000* 2,000* 4,400* 5,000* 4,010 1,410 4.24E-01 
DFp 700* 800* 1,100* 700* 1,400* 700* 600* 1,600* 1,000* 800* 940 760 1.50E-01 
DFpl 500* 500* 300* 400 1,300* 4,700* 400 500* 300* 2,600* 1,150 750 6.28E-01 
PPc 1,700* 3,000* 2,700* 3,100 2,200* 2,900* 1,400* 1,000* 2,400* 2,700* 2,310 790 2.04E-01 
PPed 4,600* 2,900* 200* 4,300* 5,000 4,300* 5,000 2,600* 400* 500* 2,980 2,020 2.63E-01 
PPp 300* 300* 100 100 100 200* 200* 100 300* 300* 200 100 3.94E-01 
PPpl 4,600* 200* 200* 5,000* 5,000* 3,600* 4,000* 4,600* 1,800* 700* 2,970 1,930 4.26E-01 
Fc 5,000 4,300* 5,000 5,000 5,000 5,000 4,700* 5,000 5,000 5,000 4,900 100 8.15E-01 
Fed 4,100* 2,800* 5,000 5,000 4,500* 5,000 5,000 5,000 3,700* 5,000 4,510 490 5.83E-01 
Fp 2,200* 2,000* 900* 1,000* 2,100* 2,400* 1,500* 1,900* 1,000* 1,700* 1,670 3,230 1.54E-01 
Fpl 200* 100* 100* 300* 600* 600* 400* 100* 200* 100* 270 4,730 1.43E-01 
Han 400* 100* 1,800* 300* 700* 1,300* 300* 1,000* 200* 2,300* 840 4,160 1.54E-01 
DEM 200* 400* 3,900* 600* 3,800* 300* 100 1,000* 900* 300* 1,150 1,050 2.04E-01 
S 400* 1,300* 5,000* 800* 1,400* 5,000* 200* 3,800* 500* 2,600* 2,100 200 8.74E-01 
A 900* 5,000* 400* 2,700* 3,000* 100* 800* 3,600* 3,900* 1,800* 2,220 1,220 9.09E-01 
SP 1,200 1,200 900* 1,100* 1,200 1,200 1,200 1,200 1,200 1,200 1,160 40 8.15E-01 
R 2,900* 2,200* 5,000* 5,000* 2,600* 2,100* 4,300 5,000* 1,200* 4,500* 3,480 820 1.00E+00 
CDD 200* 5,000 2,100* 100* 100* 100* 300* 200* 100* 300* 850 4,150 1.92E-01 
SpP 5,000 5,000 5,000 5,000 5,000 5,000 5,000 5,000 5,000 5,000 5,000 0 NA 
SuP 3,500* 300* 200* 1,500* 5,000 5,000 2,000* 400* 2,200* 5,000 2,510 2,490 3.32E-01 
b)     
Covariate Best scale (m) Mean (m) Difference (m) Wilcoxon test p-value 
DFc 5,000 5,000 5,000 5,000 5,000 5,000 5,000 5,000 5,000 5,000 5,000 0 NA 
DFed 5,000* 5,000* 5,000* 4,700* 5,000* 5,000* 200* 5,000* 4,900* 4,100* 4,390 1,790 2.27E-01 
DFp 1,300* 1,400* 1,300* 1,700 900* 1,300* 1,600* 900* 1,600* 1,500* 1,350 350 1.99E-01 
DFpl 600* 400 500* 500* 500* 500* 500* 500* 700* 600* 530 130 1.65E-01 
PPc 1,900* 1,600* 1,600* 1,600* 1,800* 100* 3,100 2,100* 300* 1,800* 1,590 1,510 2.00E-01 
PPed 200* 200* 300* 3,600* 100* 100* 100* 100* 5,000 100* 980 4,020 1.82E-01 
PPp 100 100 100 100 100 100 100 100 100 100 100 0 NA 
PPpl 100* 100* 100* 100* 100* 100* 100* 100* 5,000* 100* 590 4,310 1.01E-01 
Fc 5,000 4,900* 5,000 5,000 5,000 5,000 5,000 5,000 5,000 5,000 4,990 10 1.00E+00 
Fed 5,000 5,000 5,000 5,000 5,000 5,000 5,000 5,000 5,000 5,000 5,000 0 NA 
Fp 4,700* 5,000* 5,000* 1,300* 5,000* 5,000* 5,000* 5,000* 5,000* 4,900 4,590 310 4.62E-01 
Fpl 4,100* 4,700* 4,500* 3,900* 4,800* 5,000 5,000 5,000 5,000 5,000 4,700 300 4.90E-01 
Han 5,000 4,800* 4,700* 3,800* 4,900* 5,000 5,000 5,000 5,000 5,000 4,820 180 5.83E-01 
DEM 100 5,000* 5,000* 100 100 100 100 100 5,000* 100 1,570 1,470 6.83E-01 
S 700* 1,800* 2,600* 5,000* 300* 600* 500* 2,200* 2,000* 400* 1,610 690 5.45E-01 
A 2,300* 2,500* 2,000* 1,300* 1,900* 1,100* 1,000 3,500* 2,700* 1,300* 1,960 960 2.04E-01 
SP 1,100* 1,200 1,300* 1,100* 1,200 1,200 1,200 1,200 1,200 1,200 1,190 10 1.00E+00 
R 5,000* 3,400* 4,200* 5,000* 5,000* 3,300* 3,800* 3,000* 3,400* 5,000* 4,110 190 8.71E-01 
CDD 5,000 5,000 5,000 5,000 5,000 5,000 5,000 5,000 5,000 5,000 5,000 0 NA 
SpP 5,000 5,000 5,000 5,000 5,000 5,000 5,000 5,000 5,000 5,000 5,000 0 NA 
SuP 5,000 5,000 5,000 4,500* 5,000 5,000 5,000 5,000 5,000 5,000 4,950 50 1.00E+00 

* Scales different from the empirical model’s best scales. 
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Table 6 
Model averaged parameter coefficients of (a) the spatially representative and (b) the spatially non-representative models used for the cross-validations of the empirical 
model. Shown are the average coefficients, the absolute differences between the average coefficients and the empirical model’s coefficient and the p-value of the 
Wilcoxon test between the simulated models’ coefficients and the empirical model’s coefficient.  

a)     
Covariate Coefficients Mean Difference Wilcoxon test p-value 
Intercept -3.52 

E+00 
-3.16 
E+00 

-3.65 
E+00 

-3.54 
E+00 

-3.43 
E+00 

-3.17 
E+00 

-3.24 
E+00 

-3.11 
E+00 

-3.29 
E+00 

-3.22 
E+00 

-3.33 
E+00 

0.08  1.00 
E+00 

DFc 1.25 
E-02* 

-5.34 
E-02 

-6.11 
E-03 

1.57 
E-01* 

8.97 
E-04* 

-3.12 
E-01 

-2.49 
E-01 

-3.43 
E-02 

-1.20 
E-03 

-1.69 
E-01 

-6.53 
E-02 

0.05  7.27 
E-01 

DFed NA† NA† NA† NA† NA† NA† NA† NA† NA† NA† NA† NA‡ NA 

DFp NA† NA† NA† NA† NA† 2.68 
E-01 

NA† NA† NA† NA† 2.68 
E-01 

NA‡ NA 

DFpl 6.94 
E-01 

5.73 
E-01 

6.81 
E-01 

7.85 
E-01 

7.07 
E-01 

NA† 4.53 
E-01 

6.83 
E-01 

5.11 
E-01 

3.98 
E-01 

6.09 
E-01 

0.07  8.00 
E-01 

PPc 3.04 
E-01 

3.90 
E-01 

4.91 
E-01 

6.39 
E-01 

3.88 
E-01 

5.44 
E-01 

3.93 
E-01 

1.93 
E-01 

3.49 
E-01 

4.44 
E-01 

4.14 
E-01 

0.06  7.27 
E-01 

PPed -7.63 
E-03* 

1.04 
E-03 

1.36 
E-01 

3.62 
E-01 

2.02 
E-01 

2.25 
E-01 

2.98 
E-03 

1.46 
E-01 

1.71 
E-01 

NA† 1.38 
E-01 

0.10  8.00 
E-01 

PPp 2.02 
E-01 

2.22 
E-01 

1.85 
E-01 

1.22 
E-01 

2.05 
E-01 

3.37 
E-02 

6.39 
E-03 

1.09 
E-01 

NA† 1.98 
E-01 

1.43 
E-01 

0.04  1.00 
E+00 

PPpl NA† NA† NA† NA† NA† NA† NA† NA† NA† NA† NA† NA‡ NA 

Fc -2.66 
E-01 

-2.14 
E-01 

NA† -2.28 
E-02 

-1.38 
E-02 

NA† -2.30 
E-01 

-1.05 
E-01 

-1.42 
E-02 

-2.69 
E-01 

-1.42 
E-01 

0.06  1.00 
E+00 

Fed NA† NA† 2.71 
E-01 

NA† NA† 3.74 
E-02 

NA† NA† NA† NA† 1.54 
E-01 

NA‡ NA 

Fp NA† 2.99 
E-02 

2.77 
E-03 

1.34 
E-02 

NA† NA† 1.52 
E-03 

-4.61 
E-04 

1.96 
E-01 

1.81 
E-01 

6.07 
E-02 

NA‡ NA 

Fpl NA† NA† 2.03 
E-02 

NA† NA† 3.07 
E-01 

NA† 9.11 
E-03 

NA† 8.51 
E-02 

1.05 
E-01 

NA‡ NA 

Han NA† NA† NA† NA† NA† NA† NA† NA† NA† NA† NA† NA‡ NA 

DEM 1.21 
E-03* 

NA† -2.17 
E-02 

5.37 
E-01* 

-3.62 
E-04 

NA† NA† NA† NA† NA† 1.29 
E-01 

0.13  1.00 
E+00 

S 4.42 
E-01 

NA† -9.32 
E-03* 

5.53 
E-02 

NA† NA† 2.31 
E-01 

2.07 
E-01 

3.43 
E-01 

2.72 
E-03 

1.82 
E-01 

0.16  7.50 
E-01 

A -3.04 
E-01 

-2.88 
E-01 

-3.31 
E-01 

-2.26 
E-01 

-1.12 
E-01 

-2.16 
E-01 

-2.18 
E-01 

-3.78 
E-02 

-2.40 
E-01 

-1.01 
E-01 

-2.07 
E-01 

0.04  7.27 
E-01 

SP 2.26 
E-01 

4.00 
E-01 

3.36 
E-01 

3.33 
E-01 

3.42 
E-01 

3.04 
E-01 

3.07 
E-01 

3.61 
E-01 

2.84 
E-01 

2.53 
E-01 

3.15 
E-01 

0.00  1.00 
E+00 

R 4.14 
E-02 

3.92 
E-01 

6.39 
E-01 

1.37 
E-01 

8.60 
E-01 

3.50 
E-01 

3.29 
E-03 

1.35 
E-01 

NA† 3.31 
E-02 

2.88 
E-01 

NA‡ NA 

CDD NA† -3.01 
E-03 

NA† NA† NA† -2.42 
E-03 

2.29 
E-03 

-6.46 
E-03 

-1.52 
E-02 

-1.00 
E-01 

-2.07 
E-02 

NA‡ NA 

SpP -2.83 
E-01 

1.98 
E-03* 

NA† -4.46 
E-01 

-1.27 
E-01 

NA† 7.58 
E-04* 

NA† -4.72 
E-01 

NA† -2.21 
E-01 

0.02  1.00 
E+00 

SuP -4.29 
E-01 

-3.39 
E-01 

-3.50 
E-01 

-5.14 
E-01 

-2.57 
E-01 

-7.98 
E-02 

-4.41 
E-01 

-2.31 
E-01 

-9.44 
E-02 

-5.00 
E-01 

-3.24 
E-01 

0.01  9.09 
E-01 

SAC NA† 7.76 
E+02 

NA† NA† NA† NA† 2.83 
E+02 

2.38 
E+02 

9.71 
E+02 

8.60 
E+02 

6.25 
E+02 

78.07  1.00 
E+00 

b)     
Covariate Coefficients Mean Difference Wilcoxon test p-value 
Intercept -1.93 

E+00 
-1.96 
E+00 

-1.96 
E+00 

-2.10 
E+00 

-1.97 
E+00 

-1.85 
E+00 

-2.02 
E+00 

-2.11 
E+00 

-2.00 
E+00 

-2.05 
E+00 

-1.99 
E+00 

1.26  1.82 
E-01 

DFc -1.02 
E-01 

-2.10 
E-02 

2.52 
E-04* 

-2.91 
E-01 

-7.66 
E-02 

-8.87 
E-03 

7.13 
E-03* 

-4.95 
E-03 

5.49 
E-02* 

-4.79 
E-02 

-4.91 
E-02 

0.06  3.64 
E-01 

DFed NA† NA† NA† NA† NA† NA† 1.28 
E-01 

NA† NA† NA† 1.28 
E-01 

NA‡ NA 

DFp NA† NA† NA† NA† 1.10 
E-02 

NA† NA† 1.27 
E-02 

NA† NA† 1.20 
E-02 

NA‡ NA 

DFpl 5.24 
E-01 

4.18 
E-01 

5.59 
E-01 

4.98 
E-01 

4.99 
E-01 

5.76 
E-01 

4.30 
E-01 

6.58 
E-01 

6.30 
E-01 

5.94 
E-01 

5.39 
E-01 

0.00  1.00 
E+00 

PPc 1.85 
E-01 

2.09 
E-01 

2.20 
E-01 

2.14 
E-01 

2.33 
E-01 

2.41 
E-02 

2.62 
E-01 

1.62 
E-01 

1.18 
E-03 

1.86 
E-01 

1.70 
E-01 

0.18  1.82 
E-01 

PPed 1.85 
E-01 

1.46 
E-02 

2.17 
E-01 

2.39 
E-04 

NA† NA† NA† NA† 8.00 
E-02 

NA† 9.94 
E-02 

0.07  1.00 
E+00 

PPp 1.40 
E-01 

2.78 
E-01 

1.90 
E-01 

2.17 
E-01 

2.05 
E-01 

2.63 
E-01 

2.25 
E-01 

2.56 
E-01 

2.37 
E-01 

3.21 
E-01 

2.33 
E-01 

0.05  3.64 
E-01 

PPpl NA† NA† NA† 7.29 
E-03 

NA† NA† NA† NA† NA† NA† 7.00 
E-03 

NA‡ NA 

Fc NA† NA† NA† NA† -2.47 
E-01 

-6.97 
E-04 

-1.07 
E-01 

NA† -1.39 
E-01 

-3.05 
E-01 

-1.60 
E-01 

0.04  1.00 
E+00 

Fed 6.51 
E-02 

3.81 
E-02 

-1.12 
E-03 

1.04 
E-01 

NA† NA† NA† 2.07 
E-01 

NA† NA† 8.26 
E-02 

NA‡ NA 

Fp -1.49 
E-01 

-1.70 
E-03 

4.99 
E-03 

1.18 
E-02 

NA† NA† NA† -6.97 
E-03 

NA† NA† -2.82 
E-02 

NA‡ NA 

(continued on next page) 
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algorithm’s ability to correctly identify scales, covariates, magnitude 
and sign of the coefficients. 

These results have several interesting and important implications. 
First, they suggest that spatially non-representative models may some-
times perform better than would be indicated by the model performance 
measures of AUC, PCC and Kappa statistics. In our analysis, these models 
were better than the spatially representative models in terms of their 
match to the empirical model on which they were trained. Hence, their 
apparent low performance is an artefact of the clustered nature of the 
training and validation samples, and is not due to the model’s quality 
itself. Second, they suggest that the empirical model we produced and on 
which we based our simulations is likely also much better than would be 
indicated by AUC, PCC and Kappa statistics, as it was trained on the 
same spatial pattern of covariates as the non-representative models. 
Collectively, these results suggest that spatially representative sampling 
may not improve models built with presence-absence data in cases of 
over-dispersion of sampling locations, as may frequently happen when 
sampling for rare species with low extent of suitable habitat. In such 
cases, our results suggest that spatially non-representative sampling, 
clustered in ranges of environmental gradients across which presence- 
absence pattern pivots, may be most effective and efficient. 

Another important insight from this exercise was that spatial scaling 
analysis and logistic regression were not able to correctly identify the 
scales, covariates or magnitudes of coefficients with nearly as much 

success as we expected. By using a simulation approach, we produced a 
pattern of occurrence probability with known relationships to cova-
riates, used that probability to produce large representative presence- 
absence samples and then trained predictive models using a scale- 
optimized modelling framework. We expected that this modelling 
framework would show very high ability to extract the true scales, 
covariates and coefficients. The fact that neither the representative nor 
the non-representative models had very high precision in identifying 
these parameters is disconcerting, since this framework is routinely 
applied, and management and conservation decisions are widely based 
on these predictions. In both the representative and non-representative 
models there were frequent errors in identifying the correct scales of 
covariates (73% for representative and 53% for non-representative), the 
correct covariates (8.57% omitted and 13.81% committed for repre-
sentative, and 6.67% omitted and 11.90% committed for non- 
representative), the magnitude of the coefficients (0.06 average differ-
ence for representative and 0.16 for non-representative) and their sign 
(6.38% mismatches in coefficients’ sign for representative and 4.96% for 
non-representative). Further work using simulation approaches such as 
used here is warranted to more fully evaluate the ability of species 
distribution models to correctly identify scales, driving covariates, 
magnitudes and signs of relationships of species presence-absence 
patterns. 

Table 6 (continued ) 

Fpl NA† NA† NA† NA† NA† NA† NA† NA† NA† NA† NA† NA‡ NA 

Han NA† NA† NA† NA† NA† NA† NA† NA† NA† NA† NA† NA‡ NA 

DEM NA† 3.29 
E-03* 

1.35 
E-03* 

NA† -7.26 
E-04 

1.36 
E-02* 

9.42 
E-02* 

-4.44 
E-04 

-7.77 
E-02 

-3.59 
E-03 

3.63 
E-03 

0.00  1.00 
E+00 

S 8.73 
E-02 

2.65 
E-01 

NA† NA† 1.06 
E-01 

1.51 
E-01 

2.29 
E-01 

2.37 
E-01 

1.86 
E-01 

3.78 
E-02 

1.62 
E-01 

0.18  2.22 
E-01 

A -1.31 
E-01 

-1.22 
E-01 

-1.85 
E-01 

-2.02 
E-01 

-1.64 
E-01 

-1.71 
E-01 

-1.99 
E-01 

-1.55 
E-02 

-1.12 
E-01 

-1.06 
E-01 

-1.41 
E-01 

0.03  7.51 
E-01 

SP 2.68 
E-01 

4.33 
E-01 

3.91 
E-01 

3.89 
E-01 

4.27 
E-01 

2.91 
E-01 

3.88 
E-01 

3.07 
E-01 

4.31 
E-01 

3.84 
E-01 

3.71 
E-01 

0.06  7.27 
E-01 

R NA† NA† 1.46 
E-01 

2.28 
E-01 

5.04 
E-02 

NA† NA† NA† NA† 5.61 
E-02 

1.20 
E-01 

NA‡ NA 

CDD 2.19 
E-03 

NA† NA† -1.88 
E-03 

2.80 
E-03 

-9.22 
E-03 

9.90 
E-02 

1.21 
E-03 

NA† 4.17 
E-02 

1.94 
E-02 

NA‡ NA 

SpP -6.10 
E-02 

-2.07 
E-01 

-1.32 
E-01 

-6.11 
E-02 

-1.03 
E-03 

-1.64 
E-01 

-2.08 
E-01 

-1.70 
E-03 

-1.37 
E-01 

-1.76 
E-03 

-9.75 
E-02 

0.10  4.27 
E-01 

SuP -1.49 
E-01 

-2.68 
E-01 

-2.47 
E-01 

-2.33 
E-01 

-2.28 
E-01 

-3.02 
E-01 

-2.17 
E-01 

-1.37 
E-01 

-2.29 
E-01 

-5.83 
E-02 

-2.07 
E-01 

0.10  1.82 
E-01 

SAC NA† NA† NA† NA† NA† NA† 9.39 
E+00 

NA† 5.67 
E+01 

2.42 
E+01 

3.01 
E+01 

673.41  5.00 
E-01 

† Covariate not evaluated because dropped after multicollinearity analysis. 
‡ Difference not calculated because the covariate was dropped in the empirical model. 
* Coefficient showing an opposite sign from the empirical model’s coefficient. 

Table 7 
Models performances for the spatially representative and the spatially non-representative models. In order to maximize models’ Kappa statistics, different optimal 
thresholds were used.    

Spatially representative  Spatially non-representative  
Threshold PCC Kappa Sensitivity Specificity AUC Threshold PCC Kappa Sensitivity Specificity AUC 

Model 1 0.21 0.91 0.35 0.47 0.94 0.83 0.37 0.62 0.16 0.59 0.63 0.65 
Model 2 0.24 0.92 0.34 0.40 0.96 0.82 0.43 0.73 0.18 0.34 0.83 0.66 
Model 3 0.23 0.91 0.30 0.39 0.95 0.81 0.40 0.62 0.18 0.65 0.61 0.66 
Model 4 0.19 0.90 0.32 0.47 0.93 0.83 0.48 0.71 0.14 0.33 0.81 0.63 
Model 5 0.30 0.92 0.33 0.39 0.96 0.81 0.51 0.74 0.19 0.34 0.84 0.67 
Model 6 0.23 0.91 0.25 0.29 0.95 0.79 0.50 0.74 0.18 0.32 0.85 0.66 
Model 7 0.19 0.91 0.31 0.43 0.94 0.82 0.46 0.73 0.19 0.35 0.83 0.67 
Model 8 0.26 0.92 0.34 0.39 0.96 0.83 0.52 0.75 0.20 0.32 0.87 0.67 
Model 9 0.18 0.92 0.37 0.44 0.95 0.83 0.38 0.62 0.18 0.65 0.60 0.67 
Model 10 0.17 0.89 0.29 0.50 0.91 0.81 0.49 0.73 0.19 0.35 0.84 0.67 
Mean 

(± SD) 
0.22 
(± 0.04) 

0.91 
(± 0.01) 

0.32 
(± 0.03) 

0.42 
(± 0.06) 

0.95 
(± 0.02) 

0.82 
(± 0.01) 

0.45 
(± 0.06) 

0.70 
(± 0.06) 

0.18 
(± 0.02) 

0.42 
(± 0.14) 

0.77 
(± 0.11) 

0.66 
(± 0.01)  
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4.5. Ecological and conservation implications for flammulated owl 

Based on the observation that the non-representative simulated 
datasets produced models that perform much better than indicated by 
standard model performance statistics, we believe that our empirical 
model more reliably reflects the habitat suitability for flammulated owls 
than may be indicated by its AUC, for example. The model closely 
matches past findings on the criticality of Douglas fir and ponderosa 
pine forests for the species. Scholer et al. (2014) found Douglas fir and 
ponderosa pine forests to be important predictors, respectively at fine 
scale (400m) and at mid-broad scale (3km), in line with our results on 
the best scales for the percent of landscape covered by Douglas fir and by 
ponderosa pine. In addition, percent of the landscape covered by 
Douglas fir was the most important covariate in the model, supporting 
previous studies on the importance of Douglas fir to the presence of the 
species, which likely provides the right combination of park-like stands 
and open forest needed by flammulated owls (Christie and van Wou-
denberg, 1997; McCallum, 1994a; Scholer et al., 2014). Flammulated 
owls occupy contiguous tracts of Douglas fir and ponderosa pine forests, 
or a combination of the two, surrounded by a matrix of homogenous 
cover types (McCallum, 1994b; Scholer et al., 2014). Our model sup-
ports these findings, demonstrating that the aggregation indexes for 
Douglas fir, ponderosa pine and forest have their strongest influence at 
broad scales. We also confirmed previous findings on the topographic 
features selected by flammulated owls, highlighting that aspect and 
roughness were selected at mid-broad scales, similarly to what Scholer 
et al. (2014) found. Negative selection for aspect indicates a selection for 
south-facing slopes, in agreement with observations made by Bull et al. 
(1990) and by Barnes (2007), while positive selection for slope position 
indicates a preference for ridgetops which, combined with the 
south-facing slopes, are associated with open canopy and park-like 
stands. In addition, warmer temperatures on south slopes are needed 
for physiological demands and earlier release of snow packs, creating 
favourable conditions for insect prey. All climatic covariates were 
selected at the broadest scale, revealing their large-scale effects on 
flammulated owl habitat selection. Only spring and summer precipita-
tion were retained in the final model, and both showed a negative co-
efficient, demonstrating their negative effect on the species presence. 
Overall, we predicted that flammulated owl presence probability in the 
United States Northern Rocky Mountains is highest in Douglas fir and 
ponderosa pine forest, on south aspects and upper slopes, having rela-
tively open canopy and high solar exposure. 
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Bartoń, K., 2013. MuMIn: Multi-model inference. 
Bates, D., Machler, M., Bolker, B.M., Walker, S.C., 2015. Fitting Linear Mixed-Effects 

Models Using lme4. J Stat Softw 67, 1–48. 
Bivand, R., Piras, G., 2015. Comparing Implementations of Estimation Methods for 

Spatial Econometrics. J Stat Softw 63, 1–36. 
Boakes, E.H., McGowan, P.J.K., Fuller, R.A., Ding, C.Q., Clark, N.E., O’Connor, K., 

Mace, G.M., 2010. Distorted Views of Biodiversity: Spatial and Temporal Bias in 
Species Occurrence Data. Plos Biol 8. 

Bull, E.L., Wright, A.L., Henjum, M.G., 1990. Nesting Habitat of Flammulated Owls in 
Oregon. J Raptor Res 24, 52–55. 

Burnham, K.P., Anderson, D.R., 2002. Model Selection and Multimodel Inference: A 
Practical Information-Theoretic Approach. Springer, New York, NY, USA.  

Christie, D.A., van Woudenberg, A.M., 1997. Modeling Critical Habitat for Flammulated 
Owls (Otus flammeolus). In: Duncan, J.R., Johnson, D.H., Nicholls, T.H. (Eds.), 
Modeling Critical Habitat for Flammulated Owls (Otus flammeolus). Biology and 
Conservation of Owls of the Northern Hemisphere. USDA Forest Service Gen. Tech. 
Rep. NC-190 97–106. 

Cushman, S.A., Elliot, N.B., Macdonald, D.W., Loveridge, A.J., 2016. A multi-scale 
assessment of population connectivity in African lions (Panthera leo) in response to 
landscape change. Landscape Ecol 31, 1337–1353. 

Cushman, S.A., Macdonald, E., Landguth, E., Malhi, Y., Macdonald, D., 2017. Multiple- 
scale prediction of forest loss risk across Borneo. Landscape Ecol 32, 1581–1598. 

Evans, J.S., Oakleaf, J., Cushman, S.A., Theobald, D., 2014. An ArcGIS toolbox for 
surface gradient and geomorphometric modeling, version 2.0-0. Available: 
http://evansmurphy.wix.com/evansspatial. 

Fielding, A.H., Bell, J.F., 1997. A review of methods for the assessment of prediction 
errors in conservation presence/absence models. Environ Conserv 24, 38–49. 

Fourcade, Y., Engler, J.O., Rodder, D., Secondi, J., 2014. Mapping Species Distributions 
with MAXENT Using a Geographically Biased Sample of Presence Data: A 
Performance Assessment of Methods for Correcting Sampling Bias. Plos One 9. 

Freeman, E., Moisen, G., 2007. PresenceAbsence: An R Package for Presence Absence 
Analysis. J Stat Softw 23. 

Fylling, M.A., Carlisle, J.D., Cilimburg, A.B., Blakesley, J.A., Linkhart, B.D., Holt, D.W., 
2010. Partners in Flight – Western Working Group. Flammulated owl survey 
protocol. http://sites.google.com/site/pifwesternworkinggroup/projects/flammul 
ated-owl-monitoring. 

Guisan, A., Zimmermann, N.E., 2000. Predictive habitat distribution models in ecology. 
Ecol Model 135, 147–186. 

Hansen, M.C., Potapov, P.V., Moore, R., Hancher, M., Turubanova, S.A., Tyukavina, A., 
Thau, D., Stehman, S.V., Goetz, S.J., Loveland, T.R., Kommareddy, A., Egorov, A., 
Chini, L., Justice, C.O., Townshend, J.R.G., 2013. High-Resolution Global Maps of 
21st-Century Forest Cover Change. Science 342, 850–853. 

Hirzel, A., Guisan, A., 2002. Which is the optimal sampling strategy for habitat suitability 
modelling. Ecol Model 157, 331–341. 

Jenness, J., 2013. DEM Surface Tools for ArcGIS. Jenness Enterprises. Available at. 
http://www.jennessent.com/arcgis/surface_area.htm. 

Johnson, R.R., Brown, B.T., Haight, L.T., Simpson, J.M., 1981. Playback Recordings as a 
Special Avian Censusing Technique. Studies in Avian Biology 6, 68–75. 

Kadmon, R., Farber, O., Danin, A., 2004. Effect of roadside bias on the accuracy of 
predictive maps produced by bioclimatic models. Ecol Appl 14, 401–413. 

Kramer-Schadt, S., Niedballa, J., Pilgrim, J.D., Schroder, B., Lindenborn, J., 
Reinfelder, V., Stillfried, M., Heckmann, I., Scharf, A.K., Augeri, D.M., Cheyne, S.M., 
Hearn, A.J., Ross, J., Macdonald, D.W., Mathai, J., Eaton, J., Marshall, A.J., 
Semiadi, G., Rustam, R., Bernard, H., Alfred, R., Samejima, H., Duckworth, J.W., 
Breitenmoser-Wuersten, C., Belant, J.L., Hofer, H., Wilting, A., 2013. The importance 
of correcting for sampling bias in MaxEnt species distribution models. Diversity and 
Distributions 19, 1366–1379. 

LANDFIRE, 2005. Existing Vegetation Type Layer and Digital Elevation Model Layer. 
Department of the Interior, Geological Survey (Online), U.S. http://landfire.cr.usgs. 
gov/viewer/.  

Levin, S.A., 1992. The Problem of Pattern and Scale in Ecology. Ecology 73, 1943–1967. 
MacKenzie, D.I., 2005. What are the issues with presence-absence data for wildlife 

managers? J Wildlife Manage 69, 849–860. 
Mateo-Sánchez, M.C., Cushman, S.A., Saura, S., 2014. Scale dependence in habitat 

selection: the case of the endangered brown bear (Ursus arctos) in the Cantabrian 
Range (NW Spain). Int J Geogr Inf Sci 28, 1531–1546. 

McCallum, D.A., 1994a. Flammulated Owl (Otus flammeolus. In: Poole, A. (Ed.), The 
Birds of North America. Cornell Lab of Ornithology, Ithaca, NY, USA. http://bna.bird 
s.cornell.edu/bna/species/093.  

Review of Technical Knowledge: Flammulated Owls McCallum, D.A., 1994b. 
Flammulated, Boreal, and Great Grey Owls in the United States: A Technical 
Conservation Assessment. In: Hayward, G.D., Verner, J. (Eds.), Flammulated, Boreal, 
and Great Grey Owls in the United States: A Technical Conservation Assessment. 
USDA Forest Service Gen. Tech. Rep. RM-253, Rocky Mountain Forest and Range 
Experiment Station 14–46. 

L. Chiaverini et al.                                                                                                                                                                                                                              

https://doi.org/10.1016/j.ecolmodel.2021.109566
http://refhub.elsevier.com/S0304-3800(21)00135-6/sbref0001
http://refhub.elsevier.com/S0304-3800(21)00135-6/sbref0001
http://refhub.elsevier.com/S0304-3800(21)00135-6/sbref0002
http://refhub.elsevier.com/S0304-3800(21)00135-6/sbref0003
http://refhub.elsevier.com/S0304-3800(21)00135-6/sbref0003
http://refhub.elsevier.com/S0304-3800(21)00135-6/sbref0004
http://refhub.elsevier.com/S0304-3800(21)00135-6/sbref0004
http://refhub.elsevier.com/S0304-3800(21)00135-6/sbref0005
http://refhub.elsevier.com/S0304-3800(21)00135-6/sbref0005
http://refhub.elsevier.com/S0304-3800(21)00135-6/sbref0005
http://refhub.elsevier.com/S0304-3800(21)00135-6/sbref0006
http://refhub.elsevier.com/S0304-3800(21)00135-6/sbref0006
http://refhub.elsevier.com/S0304-3800(21)00135-6/sbref0007
http://refhub.elsevier.com/S0304-3800(21)00135-6/sbref0007
http://refhub.elsevier.com/S0304-3800(21)00135-6/sbref0008
http://refhub.elsevier.com/S0304-3800(21)00135-6/sbref0008
http://refhub.elsevier.com/S0304-3800(21)00135-6/sbref0008
http://refhub.elsevier.com/S0304-3800(21)00135-6/sbref0008
http://refhub.elsevier.com/S0304-3800(21)00135-6/sbref0008
http://refhub.elsevier.com/S0304-3800(21)00135-6/sbref0009
http://refhub.elsevier.com/S0304-3800(21)00135-6/sbref0009
http://refhub.elsevier.com/S0304-3800(21)00135-6/sbref0009
http://refhub.elsevier.com/S0304-3800(21)00135-6/sbref0010
http://refhub.elsevier.com/S0304-3800(21)00135-6/sbref0010
http://evansmurphy.wix.com/evansspatial
http://refhub.elsevier.com/S0304-3800(21)00135-6/sbref0012
http://refhub.elsevier.com/S0304-3800(21)00135-6/sbref0012
http://refhub.elsevier.com/S0304-3800(21)00135-6/sbref0013
http://refhub.elsevier.com/S0304-3800(21)00135-6/sbref0013
http://refhub.elsevier.com/S0304-3800(21)00135-6/sbref0013
http://refhub.elsevier.com/S0304-3800(21)00135-6/sbref0014
http://refhub.elsevier.com/S0304-3800(21)00135-6/sbref0014
http://sites.google.com/site/pifwesternworkinggroup/projects/flammulated-owl-monitoring
http://sites.google.com/site/pifwesternworkinggroup/projects/flammulated-owl-monitoring
http://refhub.elsevier.com/S0304-3800(21)00135-6/sbref0016
http://refhub.elsevier.com/S0304-3800(21)00135-6/sbref0016
http://refhub.elsevier.com/S0304-3800(21)00135-6/sbref0017
http://refhub.elsevier.com/S0304-3800(21)00135-6/sbref0017
http://refhub.elsevier.com/S0304-3800(21)00135-6/sbref0017
http://refhub.elsevier.com/S0304-3800(21)00135-6/sbref0017
http://refhub.elsevier.com/S0304-3800(21)00135-6/sbref0018
http://refhub.elsevier.com/S0304-3800(21)00135-6/sbref0018
http://www.jennessent.com/arcgis/surface_area.htm
http://refhub.elsevier.com/S0304-3800(21)00135-6/sbref0020
http://refhub.elsevier.com/S0304-3800(21)00135-6/sbref0020
http://refhub.elsevier.com/S0304-3800(21)00135-6/sbref0021
http://refhub.elsevier.com/S0304-3800(21)00135-6/sbref0021
http://refhub.elsevier.com/S0304-3800(21)00135-6/sbref0022
http://refhub.elsevier.com/S0304-3800(21)00135-6/sbref0022
http://refhub.elsevier.com/S0304-3800(21)00135-6/sbref0022
http://refhub.elsevier.com/S0304-3800(21)00135-6/sbref0022
http://refhub.elsevier.com/S0304-3800(21)00135-6/sbref0022
http://refhub.elsevier.com/S0304-3800(21)00135-6/sbref0022
http://refhub.elsevier.com/S0304-3800(21)00135-6/sbref0022
http://landfire.cr.usgs.gov/viewer/
http://landfire.cr.usgs.gov/viewer/
http://refhub.elsevier.com/S0304-3800(21)00135-6/sbref0024
http://refhub.elsevier.com/S0304-3800(21)00135-6/sbref0025
http://refhub.elsevier.com/S0304-3800(21)00135-6/sbref0025
http://refhub.elsevier.com/S0304-3800(21)00135-6/sbref0026
http://refhub.elsevier.com/S0304-3800(21)00135-6/sbref0026
http://refhub.elsevier.com/S0304-3800(21)00135-6/sbref0026
http://bna.birds.cornell.edu/bna/species/093
http://bna.birds.cornell.edu/bna/species/093
http://refhub.elsevier.com/S0304-3800(21)00135-6/sbref0028
http://refhub.elsevier.com/S0304-3800(21)00135-6/sbref0028
http://refhub.elsevier.com/S0304-3800(21)00135-6/sbref0028
http://refhub.elsevier.com/S0304-3800(21)00135-6/sbref0028
http://refhub.elsevier.com/S0304-3800(21)00135-6/sbref0028
http://refhub.elsevier.com/S0304-3800(21)00135-6/sbref0028


Ecological Modelling 450 (2021) 109566

13

McGarigal, K., Cushman, S.A., Ene, E., 2012. FRAGSTATS v4: spatial pattern analysis 
program for categorical and continuous maps. Computer software program produced 
by the authors at the University of Massachusetts, Amherst, MA. Available: htt 
p://www.umass.edu/landeco/research/fragstats/fragstats.html. 

McGarigal, K., Wan, H.Y., Zeller, K.A., Timm, B.C., Cushman, S.A., 2016. Multi-scale 
habitat selection modeling: a review and outlook. Landscape Ecol 31, 1161–1175. 

Merow, C., Smith, M.J., Silander, J.A., 2013. A practical guide to MaxEnt for modeling 
species’ distributions: what it does, and why inputs and settings matter. Ecography 
36, 1058–1069. 

Mohler, C.L., 1983. Effect of Sampling Pattern on Estimation of Species Distributions 
Along Gradients. Vegetatio 54, 97–102. 

Phillips, S.J., Dudik, M., Elith, J., Graham, C.H., Lehmann, A., Leathwick, J., Ferrier, S., 
2009. Sample selection bias and presence-only distribution models: implications for 
background and pseudo-absence data. Ecol Appl 19, 181–197. 

Pliscoff, P., Luebert, F., Hilger, H.H., Guisan, A., 2014. Effects of alternative sets of 
climatic predictors on species distribution models and associated estimates of 
extinction risk: A test with plants in an arid environment. Ecol Model 288, 166–177. 

PRISM Climate Group, 2016. Oregon State University. http://prism.oregonstate.edu. 
Core Team, R, 2018. R: A language and environment for statistical computing. R 

Foundation for Statistical Computing, Vienna, Austria. URL. https://www.R-project. 
org/.  

Rathbun, S.L., Gerritsen, J., 2001. Statistical Issues for Sampling Wetlands. In: Rader, R. 
B., Batzer, D.P., Wissinger, S.A. (Eds.), Bioassessment and Management of North 
American Freshwater Wetlands. Wiley, New York, NY, USA, pp. 45–58. 

Scholer, M.N., Leu, M., Belthoff, J.R., 2014. Factors Associated with Flammulated Owl 
and Northern Saw-Whet Owl Occupancy in Southern Idaho. J Raptor Res 48, 
128–141. 

Shirk, A.J., Raphael, M.G., Cushman, S.A., 2014. Spatiotemporal variation in resource 
selection: insights from the American marten (Martes americana). Ecol Appl 24, 
1434–1444. 

Sullivan, B.L., Wood, C.L., Iliff, M.J., Bonney, R.E., Fink, D., Kelling, S., 2009. eBird: A 
citizen-based bird observation network in the biological sciences. Biol Conserv 142, 
2282–2292. 

van Proosdij, A.S.J., Sosef, M.S.M., Wieringa, J.J., Raes, N., 2016. Minimum required 
number of specimen records to develop accurate species distribution models. 
Ecography 39, 542–552. 

Varela, S., Anderson, R.P., Garcia-Valdes, R., Fernandez-Gonzalez, F., 2014. 
Environmental filters reduce the effects of sampling bias and improve predictions of 
ecological niche models. Ecography 37, 1084–1091. 

Vergara, M., Cushman, S.A., Urra, F., Ruiz-Gonzalez, A., 2016. Shaken but not stirred: 
multiscale habitat suitability modeling of sympatric marten species (Martes martes 
and Martes foina) in the northern Iberian Peninsula. Landscape Ecol 31, 1241–1260. 

Wan, H.Y., McGarigal, K., Ganey, J.L., Lauret, V., Timm, B.C., Cushman, S.A., 2017. 
Meta-replication reveals nonstationarity in multi-scale habitat selection of Mexican 
Spotted Owl. Condor 119, 641–658. 

Wessels, K.J., Van Jaarsveld, A.S., Grimbeek, J.D., Van der Linde, M.J., 1998. An 
evaluation of the gradsect biological survey method. Biodivers Conserv 7, 
1093–1121. 

Wiens, J.A., 1989. Spatial Scaling in Ecology. Funct Ecol 3, 385–397. 
Williams, K.J., Belbin, L., Austin, M.P., Stein, J.L., Ferrier, S., 2012. Which 

environmental variables should I use in my biodiversity model? Int J Geogr Inf Sci 
26, 2009–2047. 

Wisdom, M.J., Holthausen, R.S., Wales, B.C., Hargis, C.D., Saab, V.A., Lee, D.C., 
Hann, W.J., Rich, T.D., Rowland, M.M., Murphy, W.J., Eames, M.R., 2000. Source 
Habitats for Terrestrial Vertebrates of Focus in the Interior Columbia Basin: Broad- 
Scale Trends and Management Implications. USDA Forest Service Gen. Tech. Rep. 
GTR-485. Pacific Northwest Research Station, Portland, OR, USA.  

Zuur, A.F., Ieno, E.N., Walker, N.J., Saveliev, A.A., Smith, G.M., 2009. Mixed Effect 
Models and Extensions in Ecology with R. Springer, New York, NY, USA.  

L. Chiaverini et al.                                                                                                                                                                                                                              

http://www.umass.edu/landeco/research/fragstats/fragstats.html
http://www.umass.edu/landeco/research/fragstats/fragstats.html
http://refhub.elsevier.com/S0304-3800(21)00135-6/sbref0030
http://refhub.elsevier.com/S0304-3800(21)00135-6/sbref0030
http://refhub.elsevier.com/S0304-3800(21)00135-6/sbref0031
http://refhub.elsevier.com/S0304-3800(21)00135-6/sbref0031
http://refhub.elsevier.com/S0304-3800(21)00135-6/sbref0031
http://refhub.elsevier.com/S0304-3800(21)00135-6/sbref0032
http://refhub.elsevier.com/S0304-3800(21)00135-6/sbref0032
http://refhub.elsevier.com/S0304-3800(21)00135-6/sbref0033
http://refhub.elsevier.com/S0304-3800(21)00135-6/sbref0033
http://refhub.elsevier.com/S0304-3800(21)00135-6/sbref0033
http://refhub.elsevier.com/S0304-3800(21)00135-6/sbref0034
http://refhub.elsevier.com/S0304-3800(21)00135-6/sbref0034
http://refhub.elsevier.com/S0304-3800(21)00135-6/sbref0034
http://prism.oregonstate.edu
https://www.R-project.org/
https://www.R-project.org/
http://refhub.elsevier.com/S0304-3800(21)00135-6/sbref0037
http://refhub.elsevier.com/S0304-3800(21)00135-6/sbref0037
http://refhub.elsevier.com/S0304-3800(21)00135-6/sbref0037
http://refhub.elsevier.com/S0304-3800(21)00135-6/sbref0038
http://refhub.elsevier.com/S0304-3800(21)00135-6/sbref0038
http://refhub.elsevier.com/S0304-3800(21)00135-6/sbref0038
http://refhub.elsevier.com/S0304-3800(21)00135-6/sbref0039
http://refhub.elsevier.com/S0304-3800(21)00135-6/sbref0039
http://refhub.elsevier.com/S0304-3800(21)00135-6/sbref0039
http://refhub.elsevier.com/S0304-3800(21)00135-6/sbref0040
http://refhub.elsevier.com/S0304-3800(21)00135-6/sbref0040
http://refhub.elsevier.com/S0304-3800(21)00135-6/sbref0040
http://refhub.elsevier.com/S0304-3800(21)00135-6/sbref0041
http://refhub.elsevier.com/S0304-3800(21)00135-6/sbref0041
http://refhub.elsevier.com/S0304-3800(21)00135-6/sbref0041
http://refhub.elsevier.com/S0304-3800(21)00135-6/sbref0042
http://refhub.elsevier.com/S0304-3800(21)00135-6/sbref0042
http://refhub.elsevier.com/S0304-3800(21)00135-6/sbref0042
http://refhub.elsevier.com/S0304-3800(21)00135-6/sbref0043
http://refhub.elsevier.com/S0304-3800(21)00135-6/sbref0043
http://refhub.elsevier.com/S0304-3800(21)00135-6/sbref0043
http://refhub.elsevier.com/S0304-3800(21)00135-6/sbref0044
http://refhub.elsevier.com/S0304-3800(21)00135-6/sbref0044
http://refhub.elsevier.com/S0304-3800(21)00135-6/sbref0044
http://refhub.elsevier.com/S0304-3800(21)00135-6/sbref0045
http://refhub.elsevier.com/S0304-3800(21)00135-6/sbref0045
http://refhub.elsevier.com/S0304-3800(21)00135-6/sbref0045
http://refhub.elsevier.com/S0304-3800(21)00135-6/sbref0046
http://refhub.elsevier.com/S0304-3800(21)00135-6/sbref0047
http://refhub.elsevier.com/S0304-3800(21)00135-6/sbref0047
http://refhub.elsevier.com/S0304-3800(21)00135-6/sbref0047
http://refhub.elsevier.com/S0304-3800(21)00135-6/sbref0048
http://refhub.elsevier.com/S0304-3800(21)00135-6/sbref0048
http://refhub.elsevier.com/S0304-3800(21)00135-6/sbref0048
http://refhub.elsevier.com/S0304-3800(21)00135-6/sbref0048
http://refhub.elsevier.com/S0304-3800(21)00135-6/sbref0048
http://refhub.elsevier.com/S0304-3800(21)00135-6/sbref0049
http://refhub.elsevier.com/S0304-3800(21)00135-6/sbref0049

	Effects of non-representative sampling design on multi-scale habitat models: flammulated owls in the Rocky Mountains.
	1 Introduction
	2 Materials and methods
	2.1 Study area
	2.2 Presence-absence locations
	2.3 Environmental covariates
	2.4 Univariate scaling and multicollinearity analysis
	2.5 Multi-scale modelling and spatial autocorrelation
	2.6 Model performance
	2.7 Simulation analyses

	3 Results
	3.1 Univariate scaling analysis and spatial autocorrelation
	3.2 Habitat covariates and multi-scale model
	3.3 Model performance
	3.4 Simulation analyses – Single-scale models
	3.5 Simulation analyses – Covariates selection and spatial autocorrelation
	3.6 Simulation analyses – Multi-scale models
	3.7 Simulation analyses – Model performance

	4 Discussion
	4.1 Differences in model performance
	4.2 Bias in scale selection
	4.3 Bias in covariates selected, signs and coefficients
	4.4 Differences between model performance
	4.5 Ecological and conservation implications for flammulated owl

	5 Funding
	Credit Author Statement
	Declaration of Competing Interest
	Supplementary materials
	References


