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Abstract

Multiple studies have used species distribution models to identify human–wildlife con-
flict drivers. An important application of these models is spatial conflict resolution by
accounting for habitat suitability and corridors. We used distribution and connectivity
models to identify habitats and corridors for brown bear Ursus arctos in southwestern
Iran with high risk of bear damages, and evaluated the effects of landscape composi-
tion and configuration on the predicted conflict hotspots. We used 154 locations of
bear damage incidents along with a suit of predictors to develop risk models. To pre-
pare predictive variables, we used brown bear occurrence data and a number of covari-
ates to develop a suitability model. We then converted the suitability map into a
resistance surface and used a connectivity model to predict corridors. Finally, the bear
damages risk map, habitats and corridors were overlaid to prioritize conflict hotspots,
corridors and habitats, and conflict-prone corridors. Proportion of suitable habitats, dis-
tance to village, density of forest patches, conservation areas and corridor bottlenecks
were the main predictors contributing to bear damages risk. A total of 38.73% of habi-
tats, and 6.24% of corridors across the 124 000-km2 study area were identified as areas
with high risk of bear damages. The risk of bear damage was also spatially associated
with forests fragmentation and patchiness of habitat. Our results highlight the impor-
tance of landscape configuration and corridors when investigating the spatial patterns
of bear damages. Our findings showed how the combination of distribution models
and connectivity analysis can guide carnivore conservation planning aiming at reduc-
ing the risk of carnivore-inflicted damages.

Introduction

Habitat fragmentation due to rapid growth of human popula-
tion and anthropogenic disturbances affects species by limit-
ing their movement (Cushman, 2006). It also brings them
closer to human settlements and increases the likelihood of
human–wildlife conflict. The most common types of dam-
ages inflicted by wildlife include attacks on human, livestock
depredations and damage to beehives and crops (Dickman,
2010). Animals involved in these damages are often deemed
undesirable and eradicated by local communities.

Large carnivores are especially vulnerable to increasing
human presence, especially at the edge of conservation areas
(Pettigrew et al., 2012; Rostro-Garcı́a et al., 2016; Broe-
khuis, Cushman, & Elliot, 2017). Due to large spatial
requirements, these carnivores typically do not persist within
isolated protected areas alone but rely heavily on suitable

habitats outside of these regions and linkages between them
(Ripple et al., 2014; Cushman et al., 2018). Where the net-
work of conservation areas intermixes with human domi-
nated landscapes, conflicts are more likely to intensify as the
risk of carnivore damages increases due to increasing pres-
ence of humans and their properties, land use conversion
and natural prey depletion (Pettigrew et al., 2012; Morales-
González et al., 2020).

Although conservation efforts in some regions have been
successful in increasing the distribution and population size
of threatened carnivores (e.g. Chapron et al., 2014), the
expansion of these species into multi-use landscapes or re-
occupation of habitats can increase the likelihood of carni-
vores damages and create a conflict between carnivores
recovery efforts and human–wildlife conflicts (Hobbs et al.,
2012). This may inhibit conservation efforts, leading to
reductions of carnivore populations and shrinkage of their
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ranges, which often results in fragmentation into smaller iso-
lated populations (Ripple et al., 2015). Therefore, under-
standing factors that trigger human–carnivore conflicts and
the trade-offs between species conservation and conflict man-
agement is a prerequisite step to delineate management
strategies for human–carnivores coexistence in multi-use
landscapes (Treves et al., 2006).

The brown bear Ursus arctos can be considered as an
umbrella species for conservation because of its large area
requirement, charismatic appearance, umbrella capacity and
low population density (Simberloff, 1999; Roberge & Angel-
stam, 2004). Human settlements, availability of anthro-
pogenic resources, roads and recreational and industrial
activities are the main threats to brown bears in human-
modified landscapes at the global scale, which may lead to
human–bear conflicts, changes in behavioral and physiologi-
cal patterns and reduced genetic variation (Morales-González
et al., 2020). In the Middle East, the range of the species
has contracted considerably, and now occupies only a small
fraction of its historical range (Calvignac, Hughes, & Hänni,
2009; Ashrafzadeh et al., 2018; Burton et al., 2018; Moqa-
naki et al., 2018). The species is at risk of local extinction
in Iran, particularly in the Zagros Mountains, due to inten-
sive habitat destruction and fragmentation, direct persecution
and conflict with pastoralists and farmers (Ansari & Ghod-
dousi, 2018; Ashrafzadeh et al., 2018; Mohammadi et al.,
2021). The southwestern parts of Iran are the southernmost
distribution range of the brown bear globally (McLellan
et al., 2017). Although a microsatellite-based genetic study
did not detect genetic differentiation among brown bears in
this area, mtDNA findings confirmed that brown bears in
southwestern Iran form a genetically distinct sub-clade that
is unique from brown bears in other parts of the country
(Ashrafzadeh, Kaboli, & Naghavi, 2016; Ashrafzadeh et al.,
2018).

Among wildlife species, brown bear damages to croplands
and orchards in southwestern Iran is one of the causes of
wildlife conflict with human activities (Unpublished data).
This may promote illegal behavior of retaliatory killing of
the species. Hence, human–bear conflict mitigation in this
area is a high management priority to create a balance
between bears’ requirements and human livelihood.

Despite the fact that human–wildlife conflict is one of the
most serious threats to carnivores (Ripple et al., 2014), the
underlying factors attributed to these conflicts are often
unknown. Although multiple studies have used distribution
models to map predation risk by wildlife species (e.g. Miller,
2015; Rostro-Garcı́a et al., 2016; Broekhuis et al., 2017),
one important but fairly neglected application of these mod-
els is to evaluate conflict risks associated with migration cor-
ridors. While corridors facilitate individual movements and
thus can help maintain connectivity between habitats, these
linkages may increase the potential for conflict with human
and human-induced mortality risk (Cushman, Compton, &
McGarigal, 2010; Cushman et al., 2018). In addition, exist-
ing networks of conservation areas are fairly ineffective in
protecting corridors of large carnivores due to their isolation,
small size and also presence of anthropogenic and natural

barriers (Macdonald et al., 2019; Ashrafzadeh et al., 2020).
Therefore, conservation planning should consider the conflict
risks both in conflict hotspots and corridors to support spe-
cies persistence in human-dominated landscapes. Identifying
the spatial relationship between migration corridors and
human–wildlife conflict provides critical information for
improving functional connectivity and for prioritizing areas
and resources for conflict mitigation efforts (Cushman et al.,
2018).

Effects of landscape features, composition and configura-
tion on conflict risks between human and carnivores are gen-
erally understudied (see Rostro-Garcı́a et al., 2016;
Broekhuis et al., 2017). Brown bears are more likely to
cause damage to beehives, crops and livestock on landscapes
characterized by a complex mosaic of forest habitat patches
(Miller et al., 2015). Conflict mitigation efforts, therefore,
should consider the effects of forest composition and config-
uration on the intersection between carnivore activity patterns
and human activities and resources (Sharma et al., 2020).

In this study, we used correlative distribution models and
habitat connectivity analysis to: (1) investigate spatial pat-
terns of brown bear damage risk in southwestern Iran; (2)
identify environmental and anthropogenic factors that may
intensify the risk of bear damages, (3) identify spatial hot-
spots of brown bear damages where mitigation and preven-
tion strategies should be adopted; and (4) assess the effects
of landscape composition and configuration on bear damage
risk.

Materials and methods

Study area

Our study area covers Fars Province in southwestern Iran,
one of the brown bear’s globally southernmost ranges
(IUCN, 2006; Ansari & Ghoddousi, 2018), with an extent of
124 000 km2 (27°–31° N to 50°–55° E; Fig. 1). The study
area is characterized by semi-arid climate conditions and is
dominated by rangelands, forests and croplands, which col-
lectively account for 90% of the study area. The Zagros
Mountains, stretching from the north-west to the south-west
across the study area provide extensive deciduous forest
habitats favored by the species. The wide range of elevation
(80–3900 m) provides diverse habitats to support many
native fauna and flora (Fars Provincial Office of Department
of Environment [FDoE], 2020). A number of conservation
areas with a total extent of 24 650 km2 and in four main
types including national parks (NPs; IUCN category II),
wildlife refuges (WRs; IUCN category IV), protected areas
(PAs; IUCN category V) and no-hunting areas (NHAs; no
IUCN category) have been established to conserve and pro-
tect natural habitats and biodiversity. In addition to the
brown bear, many species that are of conservation impor-
tance occur in the Zagros Mountains, including Persian leop-
ard Panthera pardus, caracal Caracal caracal, gray wolf
Canis lupus, mouflon Ovis gmelini, goitered gazelle Gazella
subgutturosa and wild goat Capra aegagrus. The isolation
and small size of conservation areas, as well as presence of
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anthropogenic (human land use) and natural (landscape
heterogeneity) barriers between them, result in a system
where carnivore populations extend beyond boundaries of
conservation areas. Therefore, this protected network is
insufficient to protect key habitats or corridors (Mohammadi
et al., 2021). Consequently, the intersection of key habitats
and corridors with human activities may increase the likeli-
hood of bear damages.

Ethical statement

Ethical approval and permission to conduct the questionnaire
survey were provided by the FDoE (permit No: 15398-
212495). We also received verbal consent from all individu-
als and assured them about the confidentiality and anonymity
of their data.

Analytical framework

We carried out an analytical framework to predict the spatial
patterns of bear damages risk (Fig. 2). The steps undertaken
in the study are explained in detail below.

Brown bear conflict data

We compiled data on human–bear conflict (crop and beehive
damage, domestic sheep and goat depredation and attacks on
human) across the entire of the study area (Fig. 1) from two
main sources:

First, from 2019 to 2020, we conducted surveys by mak-
ing field visits and interviewing farmers, gardeners and bee-
keepers during the peak season of bear damages (i.e. June to
October). We used semi-structured questionnaires to collect
information from reported conflict incidents. The protocol
was as follows: after each damage claim was filed by FDoE,
our research team was notified by FDoE and visited the
reported location and verified the claim by examining for
signs of physical damages. Since most of the reported claims
were related to crops raiding, we were able to assess the
accuracy of the claims with confidence. Next, we conducted
interviews only with individuals whose damage claim had
been verified by our team. To initiate the interview, we first
asked if the respondent was knowledgeable about the exis-
tence of bears. In these interviews, information was asked
about the type of damage, time of occurrence of damage and

Figure 1 Location of the study area in the southwestern of Iran and the Ursus arctos damage localities. The gray polygon in the inset map

indicates Alborz and Zagros Mountains.
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number of losses (in case of damage to livestock). In total,
we conducted 90 interviews in 37 villages (the range of
nearest neighborhood distances = 0.73–30.08 km, mean near-
est neighborhood distance = 6.88 km; Fig. 1). Spatial coordi-
nates where conflict occurred were recorded with handheld
GPS Garmin 62 s.

Second, a database (N = 64) on the damage locations was
provided by FDoE from 2011 to 2020, which is the respon-
sible agency for conflict reports in the Fars Province. The
reliability of these damage claims was verified by FDoE
guards. Further, we mapped them in Google Earth version
7.1 to check for the accuracy of the coordinates. This data-
base contains the coordinates of locations, dates and types of
damages. We only used those reports that have information
on spatial coordinates and the type of damage.

In summary, all damage data used in our study were veri-
fied data. We collected a total of 154 verified locations of
bear damages (128 localities for crop damages, 5 for live-
stock depredation, 1 for attack on human and 20 for bee-
hives damages; Fig. 1). Since factors influencing different

types of bear damages (i.e. crop and beehive damage, live-
stock depredation and attacks on human) may be similar at
broad spatial scales, we combined all data into a single
response variable in the risk model.

We calculated global Moran’s I for each covariate sepa-
rately in R package raster (Hijmans, 2021) to assess the spa-
tial pattern of the bear damage points and address the effects
of spatial autocorrelation in localities due to uneven sam-
pling efforts (Supporting Information Table S1). To avoid
bias in prediction models due to unequal sampling effort,
damage localities were spatially filtered to a minimum of
5-km distance from each other (Boria et al., 2014) according
to the bear movement (Falcucci et al., 2009) using the SDM
toolbox (Brown, 2014) in ArcGIS 10.6 (ESRI, Inc., Red-
lands, CA, USA).

Predictor variables

Considering previous studies on the conflict risk modeling of
large carnivores (e.g. Dai et al., 2019; Sharma et al., 2020;

Figure 2 The analytical framework to predict Ursus arctos damage risk.
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van Bommel et al., 2020; Zarzo-Arias et al., 2021), geo-
graphic and environmental characteristics, and bear ecology,
we selected 15 predictors in six main categories, including
brown bear suitable habitats, connectivity between highly
suitable habitats, protection, anthropogenic impact, topogra-
phy and land use/land cover (Supporting Information Table S2).
All variables were resampled to a 50 × 50 m spatial resolu-
tion. We conducted bear damages risk modeling with a
78.5 km2 circular moving-window (radius of 5 km) around
each cell, hereafter focal cell. We chose this focal cell size
based on the recommendation of Beier (2019), who recom-
mended using a corridor width of >2 km when connecting
habitat patches >80 km apart. Moreover, this focal size cor-
responds to the minimum habitat patch size required for the
stable presence of at least one adult female bear (Maiorano
et al., 2019), or equivalent to the minimum home range
requirement of a brown bear.

Habitat suitability for brown bears

To predict habitat suitability for brown bears, we ran Max-
Ent model (Phillips, Anderson, & Schapire, 2006) in the
‘dismo’ R package (Hijmans et al., 2017) with 113 oppor-
tunistically collected occurrence points (bear signs and direct
observations) collected during 2015–2019 by FDoE. We used
a spatially filtration framework to reduce spatial autocorrela-
tion in presence points (Falcucci et al., 2009). Finally, the
remaining presence points (N = 112) were used to calibrate
and evaluate the MaxEnt model. To calibrate the MaxEnt
model, we selected 12 covariates based on literature review
(Ansari & Ghoddousi, 2018; Farashi, 2018; Almasieh,
Rouhi, & Kaboodvandpour, 2019; Maiorano et al., 2019).
All covariates were calculated in a 50 × 50-m cell size (Sup-
porting Information Table S3).

Covariates used for habitat suitability modeling (Support-
ing Information Table S3) and risk mapping (Supporting
Information Table S2) were different to avoid model overfit-
ting. To provide a better approximation of the bear’s percep-
tion of the environment, we prepared the raster layers by
applying a 450-m radius moving window. This moving win-
dow size was suggested by Falcucci et al. (2009), who deter-
mined this to be the representative scale at which bears view
their immediate surrounding area as calculated by movement
data of eight GPS radio-collared bears (Falcucci et al., 2009;
Maiorano et al., 2019). For categorical variables, we calcu-
lated the proportion of each class within the mentioned mov-
ing window using FRAGSTATS (McGarigal, Cushman, &
Ene, 2012). For continuous variables, we calculated the
mean value of each variable assigned inside a given radius
for the central pixel in ArcGIS 10.4.1. (ESRI, Inc.).

We ran MaxEnt using a 10-fold cross-validation. We kept
other default parameters of the MaxEnt. The overall model’s
performance was evaluated by calculating the area under the
receiver operating characteristic curve (AUC). This model
produced a predicted map that shows two categories of
brown bear habitats, as defined below, including highly suit-
able habitats, and critical habitat for stable occurrence.
Specifically, we applied the 10th percentile training presence

threshold to define highly suitable habitats (Hemami et al.,
2020; Khosravi et al., 2021). Critical habitat for stable
occurrence was defined as contiguous highly suitable habitats
with an extent of more than 70 km2 (Maiorano et al., 2019).
The 70 km2 threshold corresponds to the minimum spatial
requirement for the stable occurrence of an adult female bear
(Maiorano et al., 2019).

To examine how the extent and configuration of brown
bear habitats may be related to bear damages risk spatially,
we calculated the percentage of study area covered by criti-
cal habitat for stable occurrence within each focal cell in
FRAGSTATS (i.e. PLAND index; McGarigal et al., 2012).
We also hypothesized that landscape fragmentation and con-
figuration would affect the risk of bear damages. To test this
hypothesis, we calculated two class-level configuration met-
rics, including the number (NP) and edge density (ED) of
highly suitable habitat patches within each focal cell. Edge
density represents the amount of perimeter of highly suitable
habitat patches and standardizes edge to a per unit area basis
that facilitates comparisons among landscapes of varying size
(McGarigal et al., 2012).

Connectivity between habitats

We assessed connectivity between predicted highly suitable
habitat patches to depict the effects of brown bear corridors
on the risk of bear damages. To do so, we used factorial
least-cost path modeling (Cushman, McKelvey, & Schwartz,
2009) in the universal corridor network simulator (UNICOR
version 2.0; Landguth et al., 2012). The factorial least-cost
path method predicts the strongest linkages among source
locations by summing the least-cost paths between all possi-
ble pairs of source points and create a cumulative density of
optimal paths across the full landscape in a synoptic frame-
work (Cushman, Landguth, & Flather, 2013). To predict con-
nectivity, UNICOR requires a resistance surface that
estimates the movement cost at any given location across the
study area and source locations as inputs. We created the
resistance surface by transforming the predicted habitat suit-
ability map, using an exponential decay function (Wan,
Cushman, & Ganey, 2019):

x ¼ 1000�1∗y (1)

where, x is the cost resistance value assigned to each pixel
and y shows the predicted habitat suitability value. We
rescaled cost resistances to a range between 1 and 10 by lin-
ear interpolation. Also, we followed the method developed by
Kaszta, Cushman, & Macdonald (2020) to define source loca-
tions in connectivity analysis. First, the predicted suitable
habitat for brown bears was rescaled between 0 and 1. Then,
a random raster layer was created in an extent same as suit-
able map and distributed values of pixels from 0 to 1 uni-
formly. The created random raster layer subtracted from the
rescaled suitable map to determine pixels with positive val-
ues. Finally, 112 points from these pixels were randomly
selected. The selected source locations were spatially rarefied
(one centroid every 5 × 5 km) to simulate the presence of the
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species across the study area. These source locations were
used as nodes for connectivity analysis in UNICOR. Based
on the predicted connectivity map, we calculated the mean
value of predicted cumulative paths within each focal cell.
We then used the predicted map of cumulative density of
optimal paths to identify corridor bottlenecks across the study
area. A high density of optimal paths indicates a lack of alter-
native paths and therefore, potential bottlenecks within a cor-
ridor. We defined corridor bottlenecks as regions with an
optimal path density higher than the mean plus two standard
deviations (Bleyhl et al., 2017). Finally, we calculated the
proportion of corridor bottlenecks within each focal cell as
another predictor variable for bear risk mapping.

Protection

We considered conservation areas as a proxy for the level of
human disturbance (including risk of anthropogenic mortality)
and habitat quality (Moqanaki & Cushman, 2017; Ahmadi
et al., 2020). As suggested by Rostro-Garcı́a et al. (2016) and
Broekhuis et al. (2017), the extent of conservation areas
within each focal cell may be more important in conflict risk
mapping than the distance of each pixel to the boundary of
the closest conservation area due to edge effects (Woodroffe
& Ginsberg, 1998). We used both variables (i.e. shortest dis-
tance from each pixel to the border of the nearest conserva-
tion area, and the proportion of conserved pixels within each
focal cell) in our damage risk modeling.

Anthropogenic impact

To address impacts of human activities on bear damages
risk, the network of roads was classified into two main
groups including main roads (e.g. highways and urban
streets) and smaller roads (e.g. trails and countryside roads).
For the former class, we calculated the Euclidean distance
from the nearest road. For the latter, road densities within
each focal cell were generated using the Line Density tool in
ArcGIS. In addition, distance to villages was calculated
using the layer of geographic localities of villages across the
study area (Supporting Information Table S2).

Land use/land cover

We extracted two land use/land cover classes including forests
and croplands using the land use/land cover map from the Ira-
nian Forests, Rangeland and Watershed Management Organi-
zation (IFRWMO). These classes can represent habitat
productivity, human disturbance, and cover for brown bears,
and consequently bear damage risk. We hypothesized that
landscape fragmentation and configuration affect the risk of
conflict (e.g. Rostro-Garcı́a et al., 2016; Broekhuis et al.,
2017). To test this hypothesis, we used FRAGSTATS to cal-
culate the spatial pattern of these land use/land cover classes
using class-level metrics including forest patch density, forest
patch ED, cropland patch density, and cropland patch ED per
focal cell. Bears are often associated with riparian ecosystems
due to higher productivity of vegetative forage and higher

density of mammal prey in these areas (Hopcraft, Sinclair, &
Packer, 2005). Thus, we calculated river density within each
focal cell using Kernel Density function in ArcGIS.

To reduce the collinearity among variables, we first
adopted hierarchical ascendant classification based on Pear-
son correlation with R package virtualspecies (Leroy et al.,
2016) to identify groups of intercorrelated variables. Then,
we calibrated the model using each group of intercorrelated
variables and selected the variable with the highest percent
contribution. Finally, we calibrated the final model using the
uncorrelated variables with highest percent contribution
(Louppe et al., 2020). Following the reduction process, 12
predictors were retained in the final risk modeling process
(Supporting Information Table S2; Figures S1 and S2).

Brown bear damage risk modeling

We used the Ensembles of Small Models (ESMs) approach
for modeling the relationship between bear damage risk and
the predictor variables (Lomba et al., 2010; Breiner et al.,
2018). We accomplished this with R packages ecospat
(Broennimann, Di Cola, & Guisan, 2015) and biomod
(Thuiller et al., 2009). The ESMs approach is an effective
technique to overcome limitations of modeling the habitat
suitability for species with limited occurrence data and per-
forms significantly better than standard species distribution
models (Breiner et al., 2018). To predict the risk of bear
damage risk, 66 small and simple MaxEnt models were cali-
brated and evaluated (models that contain only two predic-
tors at a time; bivariate models; Supporting Information
Table S4). All bivariate models were calibrated with 10 000
background points and 70% of bear damage localities as
training (n = 108) and 30% as evaluation (n = 46) data. All
background and brown bear damages occurrence localities
were weighted equally in the bivariate models. We calculated
AUC (DeLeo, 1993) and Boyce index (Hirzel et al., 2006)
to evaluate the performance of each bivariate model. Models
with a Somers’ D (Somers, 1962) lower than 0 were not
included in the ESMs. Then, the final map was calculated
using the weighted average of all resulting Somers’ D (i.e.
rescaled AUC) values of the bivariate models.

Identification of brown bear damage risk
hotspots, safe habitat patches and
corridors

We classified the brown bear damages risk map produced
from the model into three categories (i.e. low, medium and
high potential for conflict) using Jenks natural breaks (Jenks,
1967). Jenks natural breaks is a data clustering method that
uses natural groupings inherent in the data to classify values
into different classes. This method seeks to reduce the vari-
ance within groups and maximize the variance between
them. We classified cells into three categories (i.e. low;
0–0.105, medium; 0.105–0.368 and high; 0.368–0.962) by
finding points where between-group variability was highest
while within-group variability was minimized using ArcGIS
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10.5. Bear conflict hotspots were considered as areas with
high potential for damage risk. The zone with high risk was
then analysed with respect to spatial patterns of conservation
areas, critical habitats and corridors. Then, we classified ‘safe
corridors’ and ‘safe habitats’ by identifying corridors and
critical habitats that have low to medium potential for bear
damages risk. Finally, we identified high-risk critical habitats
and corridors which require urgent conservation mitigation
efforts due to the absence of alternative dispersal paths
(Ghoddousi et al., 2020).

Results

Brown bear damage risk modeling

The predicted bear risk model (Fig. 3a) had high prediction
accuracy with mean AUC and Boyce index being 0.943 and
0.942, respectively. This indicates that the selected covariates
were relevant predictors and that ESMs can reliably predict
the risk of bear damages in our study area. According to the
estimates of relative contributions of the variables, predictors
that contributed most to predicting bear damages risk were
proportion of critical habitats for stable occurrence, distance
to village, density of forest patches, distance to conservation
areas, proportion of corridor bottlenecks and density of
highly suitable habitat patches.

The potential for the risk of bear damages showed a non-
linear relationship with the proportion of critical habitats for
stable occurrence (Supporting Information Figure S3). With
increasing values this variable, the risk of brown bear dam-
age increased to its maximum and then leveled off. Distance
to villages and conservation areas were negatively related to
brown bear damage risk (Supporting Information Figure S3).
The model predicted that the potential for bear damages
increases with increasing density of forest patches, proportion
of corridor bottlenecks and density of highly suitable habitat
patches (Supporting Information Figure S3). Both landscape
configuration and composition showed strong relationships
with brown bear damage risk. Patch density of forests and
density of highly suitable habitat patches showed significant
positive relationship with bear damages risk (Supporting
Information Figure S3).

According to Jenks natural breaks classification, 3.75%
(4655 km2) and 6.91% (8574 km2) of the study area were
predicted to be highly and medium suitable for bear damage
risk, respectively (Fig. 3b). Overall, most areas with high
risk of bear damages were located in the northern, central
and western parts of the Fars Province (Fig. 3). A total of
10.80% (2662 km2) of the existing network of conservation
areas overlap with areas of high predicted risk of bear dam-
ages. Geographically, Kooh-Khersi, Tang-e-Bostanak, Mar-
goon, Arzhan and Parishan and Male Galeh conservation
areas have the highest predicted risk (Fig. 3b).

High-risk habitats and corridors

Brown bear habitats and corridors spatially overlapped with
areas of high bear damages risk at levels of 38.73%

(2622 km2) and 6.24% (430 km2) of total area, respectively
(Fig. 4a). Our analysis classified 93.76% of corridor as
safe corridors (i.e. low to medium risk), with the remain-
ing classified as corridors of high bear damages risk
(Fig. 4b). Critical habitats of high bear damages risk
mostly located in northern and central parts of the study
area (Fig. 4a).

Discussion

Human–wildlife conflicts are complex with many environ-
mental and anthropogenic factors in play. We demonstrated a
way to explore some of the spatial aspects of these complex-
ities by analysing the spatial pattern of conflict hotspots
while accounting for their proximity to critical habitats and
corridors. Our analysis provides spatially explicit information
on human–bear conflict and pinpoints habitat and corridors
that are at greater relative risk of conflict. Such information
can aid management in prioritizing areas and resources for
conflict mitigation measures.

Understanding factors that influence
brown bear damages risk

The positive effects of villages may be attributed to its posi-
tive association of available croplands and livestocks, which
increases the risk of bear damages (e.g. Miller, 2015;
Rostro-Garcı́a et al., 2016). Another important predictor of
brown bear damages risk was distance to conservation areas,
suggesting that bears were more likely to have conflict with
local people near conservation areas. This relationship may
be explained by the higher density of brown bears in these
areas due to higher levels of protection and greater edge
effects due to irregular boundaries of these areas, both of
which increase the encounter rates between bears and human
(Rostro-Garcı́a et al., 2016; Broekhuis et al., 2017).
Although conservation areas offer some degree of refuge to
bears, more frequent and prolonged drought in recent years
across the study area have led to food and water shortages
for bears, especially in summer, which encourage bears to
forage near human settlements (e.g. Doan-Crider, Tri, &
Hewitt, 2017). Bear damages to local properties was more
likely to occur near forest patches (e.g. Rostro-Garcı́a et al.,
2016). One possible explanation is that forest edges represent
areas with easier access to anthropogenic food resources and
may alter behavior and habitat selection of species (van
Bommel et al., 2020; Tee et al., 2021).

The potential for bear damages was positively associated
with increasing road density and negatively associated with
distance to roads (e.g. Sharma et al., 2020). Some possible
explanations for the higher risk of conflict in areas with
higher road density include attraction of roads as travel
routes, easier access to food and water sources and the need
to cross them to find suitable habitat (van Bommel et al.,
2020). This relationship should be interpreted with caution
due to the possibility of sampling bias as human settlements
are also more likely to locate near roads.
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Figure 3 Predicted continuous (a) and classified (b) hotspots map of Ursus arctos damages risk using Jenks natural breaks threshold (low

risk; 0–0.105, medium risk; 0.105–0.368, high risk; 0.368–0.962).
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Figure 4 Intersection map of Ursus arctos damages risk with critical habitats (a) and corridor bottlenecks (b) to identify habitats and corridors

with low to high risk of U. arctos damage. Factorial least-cost path modeling in the universal corridor network simulator was used to predict

migration corridors. Corridor bottlenecks were defined as regions with an optimal path density higher than the mean plus two standard

deviations.
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Impacts of landscape composition and
configuration on brown bear damages risk

In some studies, it has been suggested that, because of high
mobility of large carnivores, landscape composition is more
important than configuration (e.g. Mateo Sanchez, Cushman,
& Saura, 2013). However, Sauder & Rachlow (2014) sug-
gested that configuration has greater impacts on species with
large body size, high trophic level and high habitat special-
ization. While habitat composition (i.e. extent of highly suit-
able habitats) and configuration (i.e. density of forest patches
and highly suitable habitat patches) measures were both
important in predicting bear damages risk in our model,
patch density of forests and suitable habitats showed a larger
effect. It has also been shown that bears are more likely to
cause damage to beehives, crops and livestocks in more frag-
mented landscapes (Akhtar, Bargali, & Chauhan, 2004;
Carter, 2007; Tee et al., 2021). Similar relationships have
also been reported for other carnivores including Bengal
tiger Panthera tigris and leopard P. pardus in Bhutan
(Rostro-Garcı́a et al., 2016), leopard, Bengal tiger and
Asiatic elephant (Elephas maximus) in Nepal (Acharya et al.,
2017), African lions (P. leo) in southwestern Kenya
(Broekhuis et al., 2017) and leopard in north of Iran
(Ghoddousi et al., 2020).

Many fragmented forest landscapes have become human–
wildlife conflict hotspots (Michalski et al., 2006; Acharya
et al., 2017). These fragmented forests typically contain
smaller key habitat areas with reduced natural food and
water availability and access, lower overall connectivity and
greater human presences, which may alter carnivore behav-
iors such as increasing their aggressiveness (Acharya et al.,
2017). In addition, forest fragmentation in our study area is
often associated with the conversion of forests to agricultural
lands, which leads to higher presence of livestocks and crops
and thus greater risk of bear damages. Density of suitable
habitat patches was important likely because of brown bears
preference for anthropogenic food sites. When natural prey
are scarce or depleted in natural habitats, bears are more
likely to move into surrounding croplands for food (Bargali,
2012; Cozzi et al., 2016). The intersection of natural and
human habitat provides cover for bears to move along and
between the human habitat with lower risk of encountering
with humans and to access anthropogenic food. Moreover,
small and patchy suitable habitats provide low structural and
functional connectivity, which likely increase human–wildlife
conflict for species that require large area for movement,
such as the brown bear.

Safe and high-risk corridors

Migration corridors are critical for species dispersal and gene
flow, especially in a fragmented landscape, but human–wild-
life conflict pose threats to these linkages and undermine
their functionality (e.g. Cushman et al., 2018). Large-bodied
carnivores are especially susceptible to these conflicts along
migration corridors in human-dominated landscapes (e.g.

Michalski et al., 2006; Inskip & Zimmermann, 2009; Elliot
et al., 2014).

Ignoring the risk of human–wildlife conflict in landscape
connectivity assessments may lead to an overestimation of
corridor extent and functional connectivity (e.g. Ash et al.,
2020; Ghoddousi et al., 2020). We identified some corridor
bottlenecks with high conflict risks between predicted critical
habitats and conservation areas (such as between Kooh-
Khersi and Tang-e-Bostanak; Fig. 4b). Considering high-risk
corridors in future conservation plans is important for two
main reasons: (1) high-risk corridors may act as ecological
traps and increase bear mortality due to conflict (Ghoddousi
et al., 2020), which can then lead to reduced gene flow and
genetic diversity in the long run; and (2) high-risk corridors
may act as risk diffusion paths (Dai et al., 2019) and
increase conflict risks in areas connected to these paths.
Based on our findings, risk diffusion paths may exist in the
central and northern parts within the study area (i.e. corridors
with high risk of conflict; Fig. 4b), which may increase the
risk of bear damages in the future. Particularly, high-risk cor-
ridors between Kooh-Khersi no-hunting area and Tang-e-
Bostanak protected area may act as a diffusion path. Cur-
rently, brown bear damages frequently occur inside and at
the peripheral regions around Kooh-Khersi. This area con-
tains some of the largest key habitats for brown bears. We
think that bears may diffuse from Kooh-Khersi to Tang-e-
Bostanak along these high-risk corridors in search of human
food resources. Although the local people living around the
high-risk corridors are more likely to suffer damages from
bears, these corridors serve as important linkages for brown
bears and must be protected. Hence, it is essential that
authorities and decision-makers focus on short-term, locally
affordable, mitigation approaches and involve law enforce-
ment. In addition, for long-term solutions, educating and
working with the locals to develop conservation strategies
that can protect the species while assuring the livelihood of
local communities should be considered.

Scope and limitations

Although our predation risk model performed well in map-
ping bear damages risk, we recognize some potential limita-
tions of our model: (1) we combined all human–brown bear
conflict types due to small sample sizes of bear damage inci-
dents. This may affect our model since each type of damage
caused by bears may be related to a different set of environ-
mental factors (Zarzo-Arias et al., 2021). In addition, drivers
of predation risk can be prey species-specific (Milanesi
et al., 2019). Therefore, developing a separate predation risk
model for each livestock species may improve our under-
standing on damages risk and help formulate mitigation solu-
tions targeting each livestock. (2) We did not include other
environmental, economic and social factors, such as natural
food availability, availability of livestocks or beehives, hus-
bandry methods that might affect the risk of damages. How-
ever, since >83% of damage reports were related to cropland
raiding, we think that our model still paints an overall pic-
ture of the most important factors contributing to conflict
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risk. (3) We used habitat-based models to create resistance
surfaces for connectivity analysis, which represented the best
available method to produce such an analysis given the data
we had. We acknowledge that the use of empirical move-
ment data for parameterizing resistance surfaces may
improve the connectivity analysis (Zeller et al., 2018). The
efficiency of habitat suitability-based landscape resistance
have been acknowledged by Mateo-Sánchez et al. (2015)
and Zeller et al. (2018) in cases where resource limits pro-
hibit the collection of GPS collar or genetic data.

Conservation implications

With continual human expansion into wildlife species’ pri-
mary habitat, human–wildlife conflicts will only increase if
anthropogenic attractants are not effectively managed
(Baruch-Mordo et al., 2014). Actively managing these attrac-
tants across a broad landscape can be unfeasible. In this con-
text, our study serves to provide critical information for
prioritizing management and conservation efforts. Particu-
larly, the predicted brown bear damage risk hotspots and
high-risk habitats and corridors can help guide deployment
of conflict mitigation actions.

Considering that farming significantly contributes to rural
economy in this part of Iran, minimizing damages risk
through efficient and spatially precise conflict mitigations can
strengthen both economic livelihood and biodiversity conser-
vation. Based on our findings, we recommend the following
nonlethal mitigation efforts: (1) managing harvest of forest
products by local people during conflict seasons (May–July;
Parchizadeh & Belant, 2021). For example, wild pistachio
(Pistacia atlantica) forests in the predicted conflict hotspots
in the north of the study area (Kooh-Khersi and Tang-e-
Bostanak) provide critical food for the species and should be
protected against overharvesting, (2) restricting conversion of
natural habitats to orchards especially in brown bear core
habitats. The results of land use changes show that approxi-
mately 450 km2 have been added to the extent of croplands
and orchards over a period of 30 years in areas with medium
to high risk of brown bear damage (3.4% of medium to
high-risk areas; Unpublished data by Khosravi et al., 2021),
(3) avoiding overgrazing pastures by livestock and limiting
the activities of herders to the specific pastures according to
their official grazing permits in regions with high risk of
livestock depredation by bears (e.g. Margoon and Barm-e-
Firooz protected areas), (4) removing livestock carcasses and
other anthropogenic-derived food and food waste from
human-dominated landscapes, (5) installing electric fences
around orchards, and (6) adopting payment for ecosystem
services scheme (PES) and conservation performance
payments (CPP) in human–bear conflict hotspots. Direct
compensation schemes are often not sustainable and viable
long-term solutions (Zabel et al., 2011). Therefore, CPP
which establishes a direct link between monetary payments
and the production of desired conservation objectives, have
been increasing used in recent years to promote carnivore-
human coexistence (Nelson, 2009; Dickman, Macdonald, &
Macdonald, 2011; Persson, Rauset, & Chapron, 2015).

Conservation areas with relatively fewer restrictions on
human activities (e.g. no-hunting areas) that are located near
predicted risk hotspots should be prioritized for management
for two main reasons. First, these conservation areas are typ-
ically in close proximity to villages and agricultural land,
which attract bears when there are forage shortages in natu-
ral habitats (Sharma et al., 2020). Second, retaliatory killings
may be more likely when conflict occur due to fewer regula-
tions that are in place. Currently unprotected habitats in the
central and northern parts of the study area may represent
suitable candidates for the expansion of conservation areas.
Establishing new conservation areas could provide the neces-
sary law enforcement to curb potential land use change and
conflict.
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modeling brown bear damages risk.
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